Lời giải:
ĐK: \(x\geq \frac{-1}{4}\)
Biến đổi:
\(x+\frac{1}{2}+\sqrt{x+\frac{1}{4}}=\left(x+\frac{1}{4}\right)+2.\frac{1}{2}\sqrt{x+\frac{1}{4}}+(\frac{1}{2})^2\)
\(=(\sqrt{x+\frac{1}{4}}+\frac{1}{2})^2\)
\(\Rightarrow \sqrt{x+\frac{1}{2}+\sqrt{x+\frac{1}{4}}}=\sqrt{x+\frac{1}{4}}+\frac{1}{2}\)
Do đó pt ban đầu tương đương với:
\(x+\sqrt{x+\frac{1}{4}}+\frac{1}{2}=2\)
\(\Leftrightarrow (x+\frac{1}{4})+\sqrt{x+\frac{1}{4}}+\frac{1}{4}=2\)
\(\Leftrightarrow (\sqrt{x+\frac{1}{4}}+\frac{1}{2})^2=2\)
\(\Rightarrow \sqrt{x+\frac{1}{4}}+\frac{1}{2}=\sqrt{2}\) (TH bằng $-\sqrt{2}$ ta có thể loại luôn vì biểu thức không âm)
\(\Rightarrow x+\frac{1}{4}=(\sqrt{2}-\frac{1}{2})^2=\frac{9-4\sqrt{2}}{4}\)
\(\Rightarrow x=2-\sqrt{2}\) (t/m)
Vậy..............