bài 1 ; giải pt
a,\(\left(2x-3\right)^2=\left(x+1\right)^2\)
b, \(\left(x+2\right)\left(5-3x\right)=x^2+4x+4\)
c,\(x^2-9x+20=0\)
d,\(x^2+8x+16=25\)
Giải pt :
a) \(x-7\sqrt{x}-8=0\)
b) \(x+5-5\sqrt{x-1}=0\)
c) \(\left(2x^2+x\right)^2-13\left(2x^2+x\right)+12=0\)
giải pt sau bằng phương pháp đặt ẩn phụ
\(2\left(3x+5\right)\sqrt{x^2+9}=3x^2+2x+30\)
Giải PT
a) \(4x^2-3\sqrt{3}x-6=0\)
b) \(\left(1-\sqrt{5}\right)x^2-3x+\sqrt{5}+1=0\)
Giải PT:
a) \(4x^2-3\sqrt{3}x-6=0\)
b) \(\left(1-\sqrt{5}\right)x^2-3x+\sqrt{5}+1=0\)
Tìm m để pt có nghiệm:
a) \(x^2-x-3m=0\)
b) \(m^2x^2-\left(m-1\right)x-\left(m+5\right)=0\)
Tìm m để pt có nghiệm:
a) \(x^2-x-3m=0\)
b) \(m^2x^2-\left(m-1\right)x-\left(m+5\right)=0\)
Giải phương trình:
1, \(2\left(x^2-x+1\right)^2+x^3+1=\left(x+1\right)^2\)
2, \(\sqrt{2x+3}+\sqrt{x+1}=3x+2\sqrt{2x^2+5x+3}-16\)
3, \(x^2+\sqrt{x+5}=5\)
Giải pt theo cách tính \(\Delta\)
a,\(\dfrac{x}{x-1}+\dfrac{6}{x+1}-4=0\)
b,\(\dfrac{3}{x+2}=\dfrac{x^2+2x-11}{\left(x+2\right)\left(x-3\right)}\)