ĐKXĐ \(x\ne8;x\ne11;x\ne9;x\ne10\)
\(\dfrac{8}{x-8}+\dfrac{11}{x-11}=\dfrac{9}{x-9}+\dfrac{10}{x-10}\)
\(\Leftrightarrow\left(\dfrac{8}{x-8}+1\right)+\left(\dfrac{11}{x-11}+1\right)=\left(\dfrac{9}{x-9}+1\right)+\left(\dfrac{10}{x-10}+1\right)\)
\(\Leftrightarrow\dfrac{x}{x-8}+\dfrac{x}{x-11}=\dfrac{x}{x-9}+\dfrac{x}{x-10}\)
\(\Leftrightarrow\dfrac{x}{x-8}+\dfrac{x}{x-11}-\dfrac{x}{x-9}-\dfrac{x}{x-10}=0\)
\(\Leftrightarrow x\left(\dfrac{1}{x-8}+\dfrac{1}{x-11}-\dfrac{1}{x-9}-\dfrac{1}{x-10}\right)=0\)
\(\Leftrightarrow x=0\) hoặc \(\dfrac{1}{x-8}+\dfrac{1}{x-11}-\dfrac{1}{x-9}-\dfrac{1}{x-10}=0\)
1) x=0
2) \(\dfrac{1}{x-8}+\dfrac{1}{x-11}-\dfrac{1}{x-9}-\dfrac{1}{x-10}=0\)
\(\Leftrightarrow\dfrac{x-11+x-8}{\left(x-8\right)\left(x-11\right)}-\dfrac{x-10+x-9}{\left(x-9\right)\left(x-10\right)}=0\)
\(\Leftrightarrow\dfrac{2x-19}{\left(x-8\right)\left(x-11\right)}=\dfrac{2x-19}{\left(x-9\right)\left(x-10\right)}\)
\(\Leftrightarrow\dfrac{2x-19}{x^2-19x+88}=\dfrac{2x-19}{x^2-19x+90}\)
do \(x^2-19x+88\ne x^2-19x+90\)
\(\Rightarrow2x-19=0\)
=> x=\(\dfrac{19}{2}\)
Vậy x=\(0\); x=\(\dfrac{19}{2}\)
Tik