\(2x^2+2x+1=\sqrt{4x+1}\) ( ĐK : \(x\ge-\dfrac{1}{4}\) )
\(\Leftrightarrow4x^2+4x+2-2\sqrt{4x+1}=0\)
\(\Leftrightarrow4x^2+\left(4x+1-2\sqrt{4x+1}+1\right)=0\)
\(\Leftrightarrow4x^2+\left(\sqrt{4x+1}-1\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}4x^2=0\\\left(\sqrt{4x+1}-1\right)^2=0\end{matrix}\right.\Leftrightarrow x=0\)