Chương I - Căn bậc hai. Căn bậc ba

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Lê Kiều Trinh

giải phương trình

\(\sqrt{4x^2-9}\) = 2\(\sqrt{2x+3}\)

Nguyễn Hoàng Minh
20 tháng 9 2021 lúc 8:26

\(ĐK:x\ge-\dfrac{3}{2}\\ \Leftrightarrow\sqrt{\left(2x-3\right)\left(2x+3\right)}-2\sqrt{2x+3}=0\\ \Leftrightarrow\sqrt{2x+3}\left(\sqrt{2x-3}-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}2x+3=0\\\sqrt{2x-3}=2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{3}{2}\left(tm\right)\\2x-3=4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{3}{2}\left(tm\right)\\x=\dfrac{7}{2}\left(tm\right)\end{matrix}\right.\)

Lấp La Lấp Lánh
20 tháng 9 2021 lúc 8:27

\(\sqrt{4x^2-9}=2\sqrt{2x+3}\left(đk:x\ge\dfrac{3}{2}\right)\)

\(\Leftrightarrow4x^2-9=4\left(2x+3\right)\)

\(\Leftrightarrow4x^2-9=8x+12\)

\(\Leftrightarrow4x^2-8x-21=0\)

\(\Leftrightarrow\left(2x-7\right)\left(2x+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{7}{2}\left(tm\right)\\x=-\dfrac{3}{2}\left(ktm\right)\end{matrix}\right.\)


Các câu hỏi tương tự
Lê Hương Giang
Xem chi tiết
Lê Hương Giang
Xem chi tiết
Miền Nguyễn
Xem chi tiết
Lê Hương Giang
Xem chi tiết
Nguyễn Thùy Chi
Xem chi tiết
Lê Hương Giang
Xem chi tiết
👁💧👄💧👁
Xem chi tiết
Quynh Existn
Xem chi tiết
Giúp mik với mấy bạn ơi
Xem chi tiết