Chương I - Căn bậc hai. Căn bậc ba

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
👁💧👄💧👁

Giải phương trình: \(x^2+2=\sqrt{3-4x+2x^2+4x^3}\)

Nguyễn Việt Lâm
2 tháng 9 2021 lúc 12:39

ĐKXĐ: \(x\ge-\dfrac{3}{2}\)

\(x^2+2=\sqrt{\left(2x+3\right)\left(2x^2-2x+1\right)}\)

Đặt \(\left\{{}\begin{matrix}\sqrt{2x+3}=a\ge0\\\sqrt{2x^2-2x+1}=b>0\end{matrix}\right.\)

\(\Rightarrow a^2+b^2=2x^2+4=2\left(x^2+2\right)\)

Phương trình trở thành:

\(\dfrac{a^2+b^2}{2}=ab\)

\(\Leftrightarrow\left(a-b\right)^2=0\Leftrightarrow a=b\)

\(\Leftrightarrow\sqrt{2x^2-2x+1}=\sqrt{2x+3}\)

\(\Leftrightarrow2x^2-2x+1=2x+3\)

\(\Leftrightarrow x^2-2x-1=0\)

\(\Leftrightarrow...\)


Các câu hỏi tương tự
Nguyễn Thùy Chi
Xem chi tiết
Lê Hương Giang
Xem chi tiết
Giúp mik với mấy bạn ơi
Xem chi tiết
Lê Hương Giang
Xem chi tiết
Lê Kiều Trinh
Xem chi tiết
Lê Hương Giang
Xem chi tiết
Lê Hương Giang
Xem chi tiết
Miền Nguyễn
Xem chi tiết
Lê Hương Giang
Xem chi tiết