ĐKXĐ: \(x\ge-\dfrac{3}{2}\)
\(x^2+2=\sqrt{\left(2x+3\right)\left(2x^2-2x+1\right)}\)
Đặt \(\left\{{}\begin{matrix}\sqrt{2x+3}=a\ge0\\\sqrt{2x^2-2x+1}=b>0\end{matrix}\right.\)
\(\Rightarrow a^2+b^2=2x^2+4=2\left(x^2+2\right)\)
Phương trình trở thành:
\(\dfrac{a^2+b^2}{2}=ab\)
\(\Leftrightarrow\left(a-b\right)^2=0\Leftrightarrow a=b\)
\(\Leftrightarrow\sqrt{2x^2-2x+1}=\sqrt{2x+3}\)
\(\Leftrightarrow2x^2-2x+1=2x+3\)
\(\Leftrightarrow x^2-2x-1=0\)
\(\Leftrightarrow...\)