\(\Leftrightarrow x\left(\sqrt{1+x}+\sqrt{1-x}\right)+\dfrac{1}{2}\left(\sqrt{1-x}+\sqrt{1+x}\right)=x\)
\(\Leftrightarrow x\left(\sqrt{1+x}+\sqrt{1-x}\right)+\dfrac{1}{2}.\dfrac{1-x-1-x}{\sqrt{1-x}+\sqrt{1+x}}=x\)
\(\Leftrightarrow x\left(\sqrt{1+x}+\sqrt{1-x}\right)-\dfrac{x}{\sqrt{1-x}+\sqrt{1+x}}=x\)
\(x=0\) la nghiem cua pt
\(x\ne0\Rightarrow pt:\sqrt{1+x}+\sqrt{1-x}-\dfrac{1}{\sqrt{1-x}+\sqrt{1+x}}=1\)
\(u=\sqrt{1+x}+\sqrt{1-x}\Rightarrow pt:u-\dfrac{1}{u}=1\)
\(\Leftrightarrow u^2-u-1=0\Leftrightarrow\left[{}\begin{matrix}u=\dfrac{1+\sqrt{5}}{2}\\u=\dfrac{1-\sqrt{5}}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{1+x}+\sqrt{1-x}=\dfrac{1+\sqrt{5}}{2}\\\sqrt{1+x}+\sqrt{1-x}=\dfrac{1-\sqrt{5}}{2}\end{matrix}\right.\)
\(\sqrt{1+x}+\sqrt{1-x}=\dfrac{1+\sqrt{5}}{2}\Leftrightarrow2+2\sqrt{1-x^2}=\dfrac{3+\sqrt{5}}{2}\)
\(\Leftrightarrow1-x^2=\left(\dfrac{\sqrt{5}-1}{4}\right)^2\Leftrightarrow x=\pm\sqrt{\dfrac{5+\sqrt{5}}{8}}\left(tm\right)\)
Nghiệm còn lại tự xét nhé :v
P/s: Ý tưởng thuộc về Ck iu , em tag anh rồi nhé ck :v
Ơ mà này, dạo này chả thấy anh Lâm onl nhờ bà nhỉ? Bà biết ảnh bay đâu r ko? Muốn hỏi bài mà mãi chả thấy hiện hồn :v
xài nhầm nick thông cảm :v