1) \(\sqrt{x^2-x}=x\)
\(\Leftrightarrow x^2+x=x^2\)
\(\Leftrightarrow x^2+x-x^2=0\)
\(\Leftrightarrow x=0\)
Vậy: \(x=0\)
2) \(\sqrt{1-x^2}=x-1\) (ĐK: \(x\le1\))
\(\Leftrightarrow1-x^2=\left(x-1\right)^2\)
\(\Leftrightarrow1-x^2=x^2-2x+1\)
\(\Leftrightarrow-x^2-x^2-2x=1-1\)
\(\Leftrightarrow-2x^2-2x=0\)
\(\Leftrightarrow-2x\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}-2x=0\\x+1=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(tm\right)\\x=-1\left(tm\right)\end{matrix}\right.\)
Vậy \(S=\left\{0;-1\right\}\)
1: =>x^2+x=x^2 và x>=0
=>x=0
2: =>1-x^2=x^2-2x+1 và x>=1
=>x^2-2x+1-1+x^2>=0 và x>=1
=>2x^2-2x=0 và x>=1
=>x=1