Giải phương trình: \(\sqrt{x}+\sqrt{y-z}+\sqrt{z-x}=\dfrac{1}{2}\left(y+3\right)\)
\(\sqrt{x-2000}+\sqrt{y-2001}+\sqrt{z-2002}\)=\(\dfrac{1}{2}\left(x+y+z\right)-3000\)
Giải phuong trình trên
Tìm x,y,z biết: x+y+z+35 = \(2\left(2\sqrt{x+1}+3\sqrt{y+2}+4\sqrt{z+3}\right)\)
Cho x,y,z>0 tm : \(\left\{{}\begin{matrix}\sqrt{x}+\sqrt{y}+\sqrt{z}=2\\x+y+z=2\end{matrix}\right.\) .Tính:
P= \(\sqrt{\left(x+1\right).\left(y+1\right).\left(z+1\right)}.\left(\frac{\sqrt{x}}{x+1}+\frac{\sqrt{y}}{y+1}+\frac{\sqrt{z}}{z+1}\right)\)
Cho x,y,z dương. Chứng minh \(\sqrt{x^2+xy+y^2}+\sqrt{y^2+yz+z^2}+\sqrt{z^2+zx+x^2}\ge\sqrt{3}\left(x+y+z\right)\)
Cho x, y, z dương. Chứng minh rằng: \(\sqrt{x^2+xy+y^2}+\sqrt{y^2+yz+z^2}+\sqrt{z^2+zx+x^2}\ge\sqrt{3}.\left(x+y+z\right)\)
1) Giải phương trình: a) \(5\sqrt{\dfrac{9x-27}{25}}-7\sqrt{\dfrac{4x-12}{9}}-7\sqrt{x^2-9}+18\sqrt{\dfrac{9x^2-81}{91}}=0\) b) \(\sqrt{x}+\sqrt{y-1}+\sqrt{z-2}=\dfrac{1}{2}\left(x+y+z\right)\)
cho x,y,z>0 và x+y+z=\(\sqrt{2}\). chứng minh rằng
\(A=\sqrt{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\left(\dfrac{\sqrt{y+z}}{x}+\dfrac{\sqrt{z+x}}{y}+\dfrac{\sqrt{x+y}}{z}\right)\ge4\sqrt{2}\)
Cho x,y,z > 0 và xy+yz+zx=1. Tính
\(P=x.\sqrt{\dfrac{\left(1+y^2\right)\left(1+z^2\right)}{1+x^2}}+y.\sqrt{\dfrac{\left(1+z^2\right)\left(1+x^2\right)}{1+y^2}}+\sqrt{\dfrac{\left(1+x^2\right)\left(1+y^2\right)}{1+z^2}}\)