ĐK: \(x\ge-2006\)
Đặt: \(\sqrt{x+2006}=a\left(a\ge0\right)\)Thì ta có hệ pt:
\(\left\{{}\begin{matrix}x^2+a=2006\\a^2-x=2006\end{matrix}\right.\)\(\Leftrightarrow x^2+a=a^2-x\Leftrightarrow\left(x+a\right)\left(x-a+1\right)=0\)\(\Leftrightarrow\)\(\left[{}\begin{matrix}x+a=0\\x-a+1=0\end{matrix}\right.\Leftrightarrow\)\(\left[{}\begin{matrix}x+\sqrt{x+2006}=0\\x+1=\sqrt{x+2006}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x^2=x+2006\left(-2006\le x\le0\right)\\x^2+2x+1=x+2006\left(x\ge-1\right)\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x=\dfrac{1+5\sqrt{321}}{2}\left(kotm\right)\\x=\dfrac{1-5\sqrt{321}}{2}\left(tm\right)\end{matrix}\right.\\x=\dfrac{\sqrt{8021}-1}{2}\left(tm\right)\end{matrix}\right.\)
Vậy, pt có tập nghiệm là: S=\(\left\{\dfrac{1-5\sqrt{321}}{2};\dfrac{\sqrt{8021}-1}{2}\right\}\)