Chương III - Hệ hai phương trình bậc nhất hai ẩn

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Võ Thảo VY

Giai phương trình:

\(^{x^2+\sqrt{x+2006}=2006}\)

Hoàng Quốc Khánh
17 tháng 9 2018 lúc 19:34

ĐK: \(x\ge-2006\)

Đặt: \(\sqrt{x+2006}=a\left(a\ge0\right)\)Thì ta có hệ pt:

\(\left\{{}\begin{matrix}x^2+a=2006\\a^2-x=2006\end{matrix}\right.\)\(\Leftrightarrow x^2+a=a^2-x\Leftrightarrow\left(x+a\right)\left(x-a+1\right)=0\)\(\Leftrightarrow\)\(\left[{}\begin{matrix}x+a=0\\x-a+1=0\end{matrix}\right.\Leftrightarrow\)\(\left[{}\begin{matrix}x+\sqrt{x+2006}=0\\x+1=\sqrt{x+2006}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x^2=x+2006\left(-2006\le x\le0\right)\\x^2+2x+1=x+2006\left(x\ge-1\right)\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x=\dfrac{1+5\sqrt{321}}{2}\left(kotm\right)\\x=\dfrac{1-5\sqrt{321}}{2}\left(tm\right)\end{matrix}\right.\\x=\dfrac{\sqrt{8021}-1}{2}\left(tm\right)\end{matrix}\right.\)

Vậy, pt có tập nghiệm là: S=\(\left\{\dfrac{1-5\sqrt{321}}{2};\dfrac{\sqrt{8021}-1}{2}\right\}\)


Các câu hỏi tương tự
Nguyễn Võ Thảo VY
Xem chi tiết
Hoàng Duy Khánh Phan
Xem chi tiết
Nguyễn Võ Thảo VY
Xem chi tiết
Nguyễn Võ Thảo VY
Xem chi tiết
Nguyễn Võ Thảo VY
Xem chi tiết
Nguyễn Võ Thảo VY
Xem chi tiết
yến đoàn
Xem chi tiết
Nguyễn Võ Thảo VY
Xem chi tiết