Chương III - Hệ hai phương trình bậc nhất hai ẩn

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Võ Thảo VY

Giai bất phương trình:

\(\left(\dfrac{x+1}{\sqrt{x}+1}+\dfrac{1}{x+\sqrt{x}}-\dfrac{1}{\sqrt{x}}\right):\dfrac{\sqrt{x}}{x+2\sqrt{x}+1}\ge2017+\sqrt{2017}\)

Võ Trọng Khải
15 tháng 2 2019 lúc 21:20

\(\left(\dfrac{x+1}{\sqrt{x}+1}+\dfrac{1}{x+\sqrt{x}}-\dfrac{1}{\sqrt{x}}\right):\dfrac{\sqrt{x}}{x+2\sqrt{x}+1}=\left(\dfrac{x\sqrt{x}+\sqrt{x}}{x+\sqrt{x}}+\dfrac{1}{x+\sqrt{x}}-\dfrac{\sqrt{x}+1}{x}\right):\dfrac{\sqrt{x}}{\left(\sqrt{x}+1\right)^2}=\dfrac{x\sqrt{x}+\sqrt{x}}{x+\sqrt{x}}:\dfrac{\sqrt{x}}{\cdot\left(\sqrt{x}+1\right)^2}=\dfrac{\sqrt{x}\left(x+1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}:\dfrac{\sqrt{x}}{\left(\sqrt{x}+1\right)\left(\sqrt{x+1}\right)}=\dfrac{x+1}{\sqrt{x}+1}:\dfrac{\sqrt{x}}{\left(\sqrt{x}+1\right)\left(\sqrt{x}+1\right)}=\dfrac{\left(x+1\right)\left(\sqrt{x}+1\right)\left(\sqrt{x+1}\right)}{\left(\sqrt{x}+1\right)\sqrt{x}}=\dfrac{\left(x+1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}}=\dfrac{x\sqrt{x}+x+\sqrt{x}+1}{\sqrt{x}}\)

\(=x+\sqrt{x}+1+\dfrac{1}{\sqrt{x}}\ge2017+\sqrt{2017}\Leftrightarrow x+\sqrt{x}+\dfrac{1}{\sqrt{x}}\ge2016+\sqrt{2017}\Leftrightarrow x+\sqrt{x}+\dfrac{1}{\sqrt{x}}-2016-\sqrt{2017}\ge0\)

Bài toán sắp hoàn thành rồi đấy cậu giải tiếp nhé! =))


Các câu hỏi tương tự
Thủy Lê Thị Thanh
Xem chi tiết
fssd
Xem chi tiết
Ex Crush
Xem chi tiết
nguyen2005
Xem chi tiết
Nguyễn Thị Bích Thuỳ
Xem chi tiết
Nguyễn Thu Trà
Xem chi tiết
Duong Thi Nhuong
Xem chi tiết
Nguyễn Thu Trà
Xem chi tiết
Anh Quynh
Xem chi tiết