Lời giải:
ĐK: \(x\geq \frac{-1}{3}\)
PT \(\Leftrightarrow (x+1)(x+3)=(x+1)\sqrt{8x+5}+\sqrt{6x+2}\)
\(\Leftrightarrow (x+1)(x+2)+(x+1)-(x+1)\sqrt{8x+5}-\sqrt{6x+2}=0\)
\(\Leftrightarrow (x+1)(x+2-\sqrt{8x+5})+(x+1)-\sqrt{6x+2}=0\)
\(\Leftrightarrow (x+1).\frac{x^2-4x-1}{x+2+\sqrt{8x+5}}+\frac{x^2-4x-1}{x+1+\sqrt{6x+2}}=0\)
\(\Leftrightarrow (x^2-4x-1)\left(\frac{x+1}{x+2+\sqrt{8x+5}}+\frac{1}{x+1+\sqrt{6x+2}}\right)=0\)
Với mọi $x\geq \frac{-1}{3}$ ta thấy biểu thức trong " ngoặc lớn" luôn lớn hơn $0$
Do đó: \(x^2-4x-1=0\Rightarrow x=2\pm \sqrt{5}\) (đều thỏa mãn)
Vậy..............