a)\(\sqrt{2x^2+x+6}+\sqrt{x^2+x+2}=x+\dfrac{4}{x}\)
\(pt\Leftrightarrow\sqrt{2x^2+x+6}-3+\sqrt{x^2+x+2}-2=x+\dfrac{4}{x}-5\)
Liên hợp quy đồng nốt
a)\(\sqrt{2x^2+x+6}+\sqrt{x^2+x+2}=x+\dfrac{4}{x}\)
\(pt\Leftrightarrow\sqrt{2x^2+x+6}-3+\sqrt{x^2+x+2}-2=x+\dfrac{4}{x}-5\)
Liên hợp quy đồng nốt
Giải phương trình:
1. \(\sqrt{\dfrac{42}{5-x}}+\sqrt{\dfrac{60}{7-x}}=6\)
2. \(\sqrt{x^2-3x+2}+\sqrt{x+3}=\sqrt{x-2}+\sqrt{x^2+2x-3}\)
3. \(x^2+x+12\sqrt{x+1}=36\)
4. \(\sqrt{x+2}-\sqrt{x-6}=2\)
5. \(\sqrt[3]{x-1}-\sqrt[3]{x-3}=\sqrt[3]{2}\)
6. \(5\sqrt{1+x^3}=2\left(x^2+2\right)\)
6. \(\left(\sqrt{x+5}-\sqrt{x+2}\right)\left(1+\sqrt{x^2+7x+10}\right)=3\)
giải phương trình vô tỉ sau
1 ) \(\sqrt{3x^2-1}+\sqrt{x^2-x}-x\sqrt{x^2+1}=\dfrac{1}{2.\sqrt{2}}.\left(7x^2-x+4\right)\)
2) \(\left(x+3\right)\sqrt{\left(4-x\right)\left(x+12\right)}=28-x\)
3) \(x^4+2x^3+2x^2-2x+1=\left(x^3+x\right)\sqrt{\dfrac{1-x^2}{x}}\)
giải các phương trình vô tỉ sau
1) \(\dfrac{1}{\sqrt{x+1}}+\dfrac{1}{\sqrt{2x+1}}+\dfrac{1}{\sqrt{2x-1}}=\dfrac{4.\sqrt{10}}{5}\)
2) \(\left(3-x\right).\sqrt{x-1}+\sqrt{5-2x}=\sqrt{40-34x+10x^2-x^3}\)
Giải phương trình vô tỉ:
1) \(8x^2+\sqrt{\dfrac{1}{x}}=\dfrac{5}{2}\)
2) \(x^2+2x+4=3\sqrt{x^3+4x}\)
3) \(\sqrt{\dfrac{x^3}{3-4x}}-\dfrac{1}{2\sqrt{x}}=\sqrt{x}\)
4) \(\sqrt{\dfrac{5\sqrt{2}+7}{x+1}}+4x=3\sqrt{2}-1\)
giải phương trình vô tỉ sau
\(1+\dfrac{x}{\sqrt{3x-2}}=\dfrac{1+\sqrt{3x-2}}{x}\)
\(\sqrt{x-4}+\sqrt{x^2-3x+4}=x\)
Giải phương trình
\(a.\dfrac{3}{4}\sqrt{4x}-\sqrt{4x}+5=\dfrac{1}{4}\sqrt{4x}\)
\(b.\sqrt{3-x}-\sqrt{27-9x}+1,25.\sqrt{48-16x}=6\)
\(c.\dfrac{5\sqrt{x}-2}{8\sqrt{x}+2,5}=\dfrac{2}{7}\)
\(d.\sqrt{9x^2+12x+4}=4\)
Giải các pt sau:
1) \(\sqrt{x+3}+2x\sqrt{x+1}=2x+\sqrt{x^2+4x+3}\)
2) \(2\sqrt{x+3}=9x^2-x-4\)
3) \(1+\dfrac{2}{3}\sqrt{x-x^2}=\sqrt{x}+\sqrt{1-x}\)
4) \(\sqrt{x+3-4\sqrt{x-1}}+\sqrt{x+8-6\sqrt{x-1}}=1\)
5) \(\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}=\dfrac{x+3}{2}\)
giải phương trình vô tỉ sau
\(\dfrac{1}{\sqrt[4]{2x+1}}-\dfrac{1}{\sqrt[4]{x+2}}=\dfrac{x-1}{\sqrt[4]{x}}\)
Rút gọn biểu thức sau:
Q =\(\dfrac{15\sqrt{x}-11}{x+2\sqrt{x}-3}+\dfrac{3\sqrt{x}}{1-\sqrt{x}}-\dfrac{2\sqrt{x}+3}{\sqrt{x}+3}\)
P = \(\dfrac{\sqrt{x}+1}{\sqrt{x}-2}+\dfrac{2\sqrt{x}}{\sqrt{x}+x}+\dfrac{2+3x}{4-x}\)