\(\sqrt{4+x^2}+\sqrt{4-x^2}=2\sqrt{2}\)
<=> \(\left(\sqrt{4+x^2}+\sqrt{4-x^2}\right)^2=\left(2\sqrt{2}\right)^2\)
<=> \(4+x^2+2\)\(\sqrt{\left(4+x^2\right)\left(4-x^2\right)}\) \(+4-x^2\) \(=8\)
<=> \(8+2\sqrt{4^2-\left(x^2\right)^2}\) \(=8\)
<=> \(2\sqrt{16-x^4}\) \(=0\)
<=> \(\sqrt{16-x^4=0}\)
<=> \(16-x^4=0\)
<=> \(x^4=16\)
<=> \(x=2;-2\)