Violympic toán 9

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Cô Pê

Giải phương trình; \(\sqrt[3]{x+2015}+\sqrt[3]{x+2016}+\sqrt[3]{x+2017}=0\)

Akai Haruma
28 tháng 12 2018 lúc 23:12

Lời giải:

Để cho gọn đặt \(\sqrt[3]{x+2016}=a\). PT trở thành:

\(\sqrt[3]{a^3-1}+a+\sqrt[3]{a^3+1}=0\)

\(\Leftrightarrow (\sqrt[3]{a^3-1}+1)+a+(\sqrt[3]{a^3+1}-1)=0\)

\(\Leftrightarrow \frac{a^3}{\sqrt[3]{(a^3-1)^2}-\sqrt[3]{a^3-1}+1}+a+\frac{a^3}{\sqrt[3]{(a^3+1)^2}+\sqrt[3]{a^3+1}+1}=0\)

\(\Leftrightarrow a( \frac{a^2}{\sqrt[3]{(a^3-1)^2}-\sqrt[3]{a^3-1}+1}+1+\frac{a^2}{\sqrt[3]{(a^3+1)^2}+\sqrt[3]{a^3+1}+1})=0\)

Ta thấy:

\(\sqrt[3]{(a^3-1)^2}-\sqrt[3]{a^3-1}+1=(\sqrt[3]{a^3-1}-\frac{1}{2})^2+\frac{3}{4}>0\)

\(\Rightarrow \frac{a^2}{\sqrt[3]{(a^3-1)^2}-\sqrt[3]{a^3-1}+1}\geq 0\)

Tương tự: \(\frac{a^2}{\sqrt[3]{(a^3+1)^2}+\sqrt[3]{a^3+1}+1}\geq 0\)

Do đó biểu thức " trong ngoặc " lớn hơn $0$

\(\Rightarrow a=0\)

\(\Rightarrow \sqrt[3]{x+2016}=0\Rightarrow x=-2016\)


Các câu hỏi tương tự
Mai Tiến Đỗ
Xem chi tiết
Big City Boy
Xem chi tiết
Big City Boy
Xem chi tiết
Nguyễn Hồng Đan
Xem chi tiết
Big City Boy
Xem chi tiết
Trúc Nguyễn
Xem chi tiết
Ánh Dương
Xem chi tiết
Trúc Nguyễn
Xem chi tiết
Trúc Nguyễn
Xem chi tiết