Ta có :
\(\frac{x^2+6}{x}\) = x + \(\frac{3}{2}\)
<=> \(\frac{x^2+6}{x}\) = \(\frac{2x+3}{2}\)
<=> \(\frac{2\left(x^2+6\right)}{2x}\)= \(\frac{x\left(2x+3\right)}{2x}\)
<=> 2x2 + 12 = 2x2 + 3x
<=> 2x2 + 12 - 2x2 - 3x = 0
<=> 12 - 3x = 0
<=> -3x = -12
<=> x = \(\frac{-12}{-3}\) = 4
Vậy x = 4 thì \(\frac{x^2+6}{x}\) = x + \(\frac{3}{2}\)
Ta có:
\(\frac{x^2-6}{x}=x+\frac{3}{2}\)
\(\Leftrightarrow\frac{x^2-6}{x}=\frac{2x+3}{2}\)
\(\Rightarrow2\left(x^2-6\right)=x\left(2x+3\right)\)
\(\Leftrightarrow2x^2-12=2x^2+3x\)
\(\Leftrightarrow2x^2-12-2x^2-3x=0\)
\(\Leftrightarrow-12-3x=0\)
\(\Leftrightarrow-3x=12\)
\(\Leftrightarrow x=\frac{12}{-3}\)
\(\Leftrightarrow x=-4\)
Vậy với \(x=-4\) thì \(\frac{x^2-6}{x}=x+\frac{3}{2}\)
Ta có :
\(\frac{x^2-6}{x}\) = x + \(\frac{3}{2}\)
<=> \(\frac{x^2-6}{x}\) = \(\frac{2x+3}{x}\)
<=> \(\frac{2\left(x^2-6\right)}{2x}\) = \(\frac{x\left(2x+3\right)}{2x}\)
<=> 2x2 - 12 = 2x2 + 3x
<=> 2x2 - 12 - 2x2 - 3x = 0
<=> - 12 - 3x =0
<=> -3x = 12
<=> x = \(\frac{12}{-3}\) = -4
Vậy x = -4 thì \(\frac{x^2-6}{x}\) = x + \(\frac{3}{2}\)