a) \(\frac{x+3}{x-2}-\frac{2x+3}{x+2}=\frac{2x^2+5x+12}{x^2-4}\)
ĐKXĐ: \(\left\{\begin{matrix}x\ne2\\x\ne-2\end{matrix}\right.\)
\(\Rightarrow\left(x+3\right)\left(x+2\right)-\left(2x+3\right)\left(x-2\right)=2x^2+5x+12\)
\(\Leftrightarrow x^2+2x+3x+6-2x^2+4x-3x+6-2x^2-5x-12=0\)
\(\Leftrightarrow-3x^2+4x=0\)
\(\Leftrightarrow3x^2-4x=0\)
\(\Leftrightarrow x\left(3x-4\right)=0\)
\(\Leftrightarrow\left[\begin{matrix}x=0\\3x-4=0\end{matrix}\right.\Leftrightarrow\left[\begin{matrix}x=0\\3x=4\end{matrix}\right.\Leftrightarrow\left[\begin{matrix}x=0\left(tmđk\right)\\x=\frac{4}{3}\left(tmđk\right)\end{matrix}\right.\)
Vậy: \(x=0;\frac{4}{3}\)
_Chúc bạn học tốt_
b) Ta có: \(\frac{2x+5}{x-3}+\frac{x-1}{x+3}=\frac{x^2+6x+18}{x^2-9}\)
ĐKXĐ: \(\left\{\begin{matrix}x\ne3\\x\ne-3\end{matrix}\right.\)
\(\Leftrightarrow\frac{\left(2x+5\right)\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}+\frac{\left(x-1\right)\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}=\frac{x^2+6x+18}{\left(x+3\right)\left(x-3\right)}\)
\(\Rightarrow\left(2x+5\right)\left(x+3\right)+\left(x-1\right)\left(x-3\right)=x^2+6x-18\)
\(\Leftrightarrow2x^2+6x+5x+15+x^2-3x-x+3-x^2-6x-18=0\)
\(\Leftrightarrow2x^2+x=0\)
\(\Leftrightarrow x\left(2x+1\right)=0\)
\(\Leftrightarrow\left[\begin{matrix}x=0\\2x+1=0\end{matrix}\right.\Leftrightarrow\left[\begin{matrix}x=0\\2x=-1\end{matrix}\right.\Leftrightarrow\left[\begin{matrix}x=0\\x=-\frac{1}{2}\end{matrix}\right.\)
Vậy: \(x=0;-\frac{1}{2}\)
_Chúc bạn học tốt_
a) x+3/x-2 - 2x+3/x+2 =2x2+5x+12/x2-4
đkxđ : x khác -2; x khác 2
<=>(x+3).(x+2)/(x-2).(x+2) - (2x+3).(x-2)/(x-2).(x+2) = 2x2+5x+12/(x-2).(x+2)
=>x2+2x+3x+6 - 2x2-4x+3x-6 =2x2+5x+12
<=>x2-2x2-2x2 + 2x+3x-4x-5x = 12-6+6
<=>-3x2 - 4x = 0
<=>-x(3x-4)=0
<=>-x=0
<=>3x-4=0
<=>-x=0
<=>3x=4
<=>-x/-1=0/-1
<=>3x/3=4/3
<=>x=0(tm)
<=>x=4/3(tm)
vậy phương trình có nghiệm x=0 ; x=4/3.