ĐKXĐ: ...
Đặt \(\left\{{}\begin{matrix}x^2+x=a\\2x=b\end{matrix}\right.\)
\(\frac{\sqrt{27+a}}{2+\sqrt{5-a}}=\frac{\sqrt{27+b}}{2+\sqrt{5-b}}\)
\(\Leftrightarrow2\left(\sqrt{27+a}-\sqrt{27+b}\right)+\sqrt{\left(27+a\right)\left(5-b\right)}-\sqrt{\left(27+b\right)\left(5-a\right)}+\sqrt{5-b}-\sqrt{5-a}=0\)
\(\Leftrightarrow\frac{2\left(a-b\right)}{\sqrt{27+a}+\sqrt{27+b}}+\frac{32\left(a-b\right)}{\sqrt{\left(27+a\right)\left(5-b\right)}+\sqrt{\left(27+b\right)\left(5-a\right)}}+\frac{a-b}{\sqrt{5-b}+\sqrt{5-a}}=0\)
\(\Leftrightarrow\left(a-b\right)\left(\frac{2}{\sqrt{27+a}+\sqrt{27+b}}+\frac{32}{\sqrt{\left(27+a\right)\left(5-b\right)}+\sqrt{\left(27+b\right)\left(5-a\right)}}+\frac{1}{\sqrt{5-b}+\sqrt{5-a}}\right)=0\)
\(\Leftrightarrow a=b\Leftrightarrow x^2+x=2x\)
\(\Leftrightarrow x^2-x=0\)