Giải phương trình:
\(\frac{1}{x-1}+\frac{6}{3x+5}=\frac{2}{x+2}+\frac{1}{x+3}\)
Giải phương trình :
\(\frac{1}{5x^2-x+3}+\frac{1}{5x^2+x+7}+\frac{1}{5x^2+3x+13}+\frac{1}{5x^2+5x+21}=\frac{4}{x^2+6x+5}\) với x > 0
Giải phương trình:
\(\frac{\left(x-1\right)^4}{\left(x^2-3\right)^2}+\left(x^2-3\right)^4+\frac{1}{\left(x-1\right)^2}=3x^2-2x-5\)
Giải phương trình
\(\frac{1}{5x^2-x+3}+\frac{1}{5x^2+x+7}+\frac{1}{5x^2+3x+13}+\frac{1}{5x^2+5x+21}=\frac{4}{x^2+6x+5}\) với x>0
@@@ Giúp em với @@@
--- Em đag cần ạ ---
Giải phương trình sau:
\(\sqrt{\frac{1-2x}{x}}=\frac{3x+x^2}{x^2+1}\)
\(x^2-3x+1=-\frac{\sqrt{3}}{3}\sqrt{x^4+x^2+1}\)
\(x^2-\sqrt{x^3+x}=6x-1\)
\(3\sqrt{x^2-\frac{1}{4}+\sqrt{x^2+x+\frac{1}{4}}}=\frac{1}{2}\left(2x^3+x^2+2x+1\right)\)
\(x^2+\frac{8x^3}{\sqrt{9-x^2}}=9\)
\(\frac{1}{\sqrt{x+3}}+\frac{1}{\sqrt{3x+1}}=\frac{2}{1+\sqrt{x}}\)
Giải các hệ phương trình:
\(a,\left\{{}\begin{matrix}\frac{3x-2y}{5}+\frac{5x-3y}{3}=x+1\\\frac{2x-3y}{3}+\frac{4x-3y}{2}=y+1\end{matrix}\right.\)
\(b,\left\{{}\begin{matrix}\frac{1}{x-3}-\frac{1}{y-1}=0\\3x-2y=7\end{matrix}\right.\)
Giải phương trình:
\(\frac{1}{\sqrt{x+3}}+\frac{1}{\sqrt{3x+1}}=\frac{2}{1+\sqrt{x}}\)
Giải phương trình sau :
\(x^3+\frac{x^3}{\left(x-1\right)^3}+\frac{3x^2}{x-1}-2=0\)