Giải phương trình: \(2\left[3x\right]=\left[x+\frac{2}{3}\right]+\left[x+\frac{1}{3}\right]+\left[x\right]+1\)
Giải phương trình:
\(\frac{\left(x-1\right)^4}{\left(x^2-3\right)^2}+\left(x^2-3\right)^4+\frac{1}{\left(x-1\right)^2}=3x^2-2x-5\)
Giải hệ phương trình :
1, \(\left\{{}\begin{matrix}\frac{2}{x}+\frac{3}{y-2}=4\\\frac{4}{x}+\frac{1}{y-2}=1\end{matrix}\right.\)
2 , \(\left\{{}\begin{matrix}\frac{2}{2x-y}-\frac{1}{x+y}=0\\\frac{3}{2x-y}-\frac{6}{x+y}=-1\end{matrix}\right.\)
3, \(\left\{{}\begin{matrix}5\left(x+2y\right)=3x-1\\2x+4=3\left(x-2y\right)-15\end{matrix}\right.\)
4, \(\left\{{}\begin{matrix}2x+y=7\\-x+4y=10\end{matrix}\right.\)
Giải phương trình :
a) \(\frac{x^2}{\left(x+2\right)^2}=3x^2-6x-3\)
b) \(8\left(x+\frac{1}{x}\right)^2+4\left(x^2+\frac{1}{x^2}\right)^2-4\left(x^2+\frac{1}{x^2}\right)^2\left(x+\frac{1}{x}\right)^2=\left(x-4\right)^2\)
Giai phương trình:
\(x^{3^{ }}+\frac{x^3}{\left(x-1\right)^3}+\frac{3x^2}{x-1}-2=0\)
giải hệ phương trình:
1, \(\left\{{}\begin{matrix}2y\left(4y^2+3x^2\right)=x^4\left(x^2+3\right)\\2012^x\left(\sqrt{2y-2x+5}-x+1\right)=4024\end{matrix}\right.\)
2, \(\left\{{}\begin{matrix}x^3-2x^2y-15x=6y\left(2x-5-4y\right)\\\frac{x^2}{8y}+\frac{2x}{3}=\sqrt{\frac{x^3}{3y}+\frac{x^2}{4}}-\frac{y}{2}\end{matrix}\right.\)
3, \(\left\{{}\begin{matrix}8\left(x^2+y^2\right)+4xy+\frac{5}{\left(x+y\right)^2}=13\\2x+\frac{1}{x+y}=1\end{matrix}\right.\)
Giải các hệ phương trình:
\(a,\left\{{}\begin{matrix}\frac{3x-2y}{5}+\frac{5x-3y}{3}=x+1\\\frac{2x-3y}{3}+\frac{4x-3y}{2}=y+1\end{matrix}\right.\)
\(b,\left\{{}\begin{matrix}\frac{1}{x-3}-\frac{1}{y-1}=0\\3x-2y=7\end{matrix}\right.\)
Giải phương trình, hệ phương trình:
a) \(\frac{\sqrt{x-2013}-1}{x-2013}+\frac{\sqrt{y-2014}-1}{y-2014}+\frac{\sqrt{z-2015}-1}{z-2015}=\frac{3}{4}\)
b) \(\left\{{}\begin{matrix}x^3+1=2y\\y^3+1=2x\end{matrix}\right.\)
c)\(\sqrt{x^2-3x+2}+\sqrt{x-3}=\sqrt{x-2}+\sqrt{x^2+2x-3}\)
d)\(5x-2\sqrt{x}\left(2+y\right)+y^2+1=0\)
giải phương trình :
\(x^2+5x+\frac{1}{x}=4+\left(3x+1\right)\sqrt[3]{3x\left(x^2+2\right)}\)