a
\(\Leftrightarrow\left(\sqrt{x}-1\right)^2=0\\ \Leftrightarrow\sqrt{x}-1=0\\ \Leftrightarrow\sqrt{x}=1\\ \Leftrightarrow x=1^2=1\)
b
ĐK: \(x\ge0\)
\(\Leftrightarrow x+\sqrt{x}-3\sqrt{x}-3=0\\ \Leftrightarrow x+\sqrt{x}-\left(3\sqrt{x}+3\right)=0\\ \Leftrightarrow\sqrt{x}\left(\sqrt{x}+1\right)-3\left(\sqrt{x}+1\right)=0\\ \Leftrightarrow\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)=0\\ \Leftrightarrow\left\{{}\begin{matrix}\sqrt{x}+1=0\\\sqrt{x}-3=0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}\sqrt{x}=-1\left(loại\right)\\x=9\left(nhận\right)\end{matrix}\right.\)
a: =>(căn x-1)^2=0
=>căn x-1=0
=>x=1
b: =>(căn x-3)(căn x+1)=0
=>căn x-3=0
=>căn x=3
=>x=9
Lời giải:
a. ĐK: $x\geq 0$
$x-2\sqrt{x}+1=0$
$\Leftrightarrow (\sqrt{x}-1)^2=0$
$\Leftrightarrow \sqrt{x}-1=0$
$\Leftrightarrow \sqrt{x}=1$
$\Leftrightarrow x=1$ (tm)
b. ĐK: $x\geq 0$
PT $\Leftrightarrow (x+\sqrt{x})-(3\sqrt{x}+3)=0$
$\Leftrightarrow \sqrt{x}(\sqrt{x}+1)-3(\sqrt{x}+1)=0$
$\Leftrightarrow (\sqrt{x}+1)(\sqrt{x}-3)=0$
Vì $\sqrt{x}+1\geq 1>0$ với mọi $x\geq 0$ nên $\sqrt{x}-3=0$
$\Leftrightarrow \sqrt{x}=3$
$\Leftrightarrow x=9$ (tm)