ta có : \(2sin^2x+2cos^4x=2cos^2x+sinx.cosx\)
\(\Leftrightarrow2sin^2x+2cos^2x\left(cos^2x-1\right)-sinx.cosx=0\)
\(\Leftrightarrow2sin^2x-2cos^2x.sin^2x-sinx.cosx=0\)
\(\Leftrightarrow2sin^2x\left(1-cos^2x\right)-sinx.cosx=0\)
\(\Leftrightarrow2sin^4x-sinx.cosx=sinx\left(2sin^3x-cosx\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx=0\\2sin^3x-cosx=0\end{matrix}\right.\)
tới đây bn giải như phương trình dạng bình thường nha :)