\(\Leftrightarrow x^2+5x-2-2\sqrt[3]{x^2+5x-2}+4=0\)
Đặt \(\sqrt[3]{x^2+5x-2}=t\)
\(\Rightarrow t^3-2t+4=0\)
\(\Leftrightarrow\left(t+2\right)\left(t^2-2t+2\right)=0\)
\(\Leftrightarrow t=-2\)
\(\Rightarrow\sqrt[3]{x^2+5x-2}=-2\)
\(\Leftrightarrow x^2+5x-2=-8\)
\(\Leftrightarrow x^2+5x+6=0\Rightarrow\left[{}\begin{matrix}x=-2\\x=-3\end{matrix}\right.\)
2.
ĐKXĐ: \(-3\le x\le6\)
Đặt \(\sqrt{x+3}+\sqrt{6-x}=t>0\)
\(\Rightarrow t^2=9+2\sqrt{\left(x+3\right)\left(6-x\right)}\)
\(\Rightarrow\sqrt{\left(x+3\right)\left(6-x\right)}=\frac{t^2-9}{2}\)
Pt trở thành:
\(t-\frac{t^2-9}{2}=3\)
\(\Leftrightarrow t^2-2t-3=0\Rightarrow\left[{}\begin{matrix}t=-1\left(l\right)\\t=3\end{matrix}\right.\)
\(\Rightarrow\sqrt{x+3}+\sqrt{6-x}=3\)
\(\Leftrightarrow9+2\sqrt{\left(x+3\right)\left(6-x\right)}=9\)
\(\Leftrightarrow\sqrt{\left(x+3\right)\left(6-x\right)}=0\)
\(\Rightarrow\left[{}\begin{matrix}x=-3\\x=6\end{matrix}\right.\)