Phép nhân và phép chia các đa thức

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Thị Mỹ Lệ

Giải: \(\left\{{}\begin{matrix}x+y+xy=2+3\sqrt{2}\\x^2+y^2=6\end{matrix}\right.\)

Lâm Tố Như
9 tháng 6 2018 lúc 11:44

hệ pt tương đương \(\left\{{}\begin{matrix}x+y+xy=2+3\sqrt{2}\\\left(x+y\right)^2-2xy=6\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2\left(x+y\right)+2xy=4+6\sqrt{2}\\\left(x+y\right)^2-2xy=6\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2\left(x+y\right)+\left(x+y\right)^2=10+6\sqrt{2}\left(1\right)\\x^2+y^2=6\end{matrix}\right.\)

Đặt x+y = t , phương trình (1)<=>2t+\(t^2\) =\(10+6\sqrt{2}\)

<=>\(t^2\)+2t -\(10-6\sqrt{2}\)=0

\(\Delta'=1-\left(-10-6\sqrt{2}\right)=11+6\sqrt{2}>0\)

pt có 2 nghiệm phân biệt

*

\(t_1=-1+\sqrt{11+6\sqrt{2}}\)

=>x+y=\(-1+\sqrt{11+6\sqrt{2}}\)(2)

\(x^2+y^2\)=6 <=>(\(\left(-1+\sqrt{11+6\sqrt{2}}\right)^2-2xy=6\)

<=>xy=\(\dfrac{\left(-1+\sqrt{11+6\sqrt{2}}\right)^2-6}{2}\)

<=>xy=\(\dfrac{6+6\sqrt{2}-2\sqrt{11+6\sqrt{2}}}{2}=3+3\sqrt{2}-\sqrt{11+6\sqrt{2}}\)

(3)

Từ 2,3 ta có hệ : \(\left\{{}\begin{matrix}xy=3+3\sqrt{2}-\sqrt{11+6\sqrt{2}}\\x+y=-1+\sqrt{11+6\sqrt{2}}\end{matrix}\right.\)

<=>\(\left\{{}\begin{matrix}x=2\\y=-3+\sqrt{11+6\sqrt{2}}\end{matrix}\right.\)(cái này mk giải bằng phương pháp thế )

*

\(t_2=-1-\sqrt{11+6\sqrt{2}}\)

( trường hợp này bạn tự giải đi nha )


Các câu hỏi tương tự
Chan Chan
Xem chi tiết
Duong Thi Nhuong
Xem chi tiết
Duong Thi Nhuong
Xem chi tiết
Duong Thi Nhuong
Xem chi tiết
Thái Đào
Xem chi tiết
Duong Thi Nhuong
Xem chi tiết
Duong Thi Nhuong
Xem chi tiết
Duong Thi Nhuong
Xem chi tiết
Phạm Minh Quang
Xem chi tiết