Cho HPT: \(\left\{{}\begin{matrix}3x+my=m\\\left(m-1\right)x+2y=m-1\end{matrix}\right.\)
a, Giải HPT khi m = -3
b, Tìm m để HPT có nghiệm duy nhất (x;y) thỏa mãn điều kiện x + y2 = 1
Giải hpt : \(\left\{{}\begin{matrix}2x^2+3xy-2y^2-5\left(2x-y\right)=0\\x^2-2xy-3y^2+15=0\end{matrix}\right.\)
giải HPT :
\(\left\{{}\begin{matrix}x+y+2xy=7\\x^2+y^2-xy=3\end{matrix}\right.\)
giải hpt:
a)\(\left\{{}\begin{matrix}\dfrac{10}{\sqrt{12x-3}}+\dfrac{5}{\sqrt{4y+1}}=1\\\dfrac{7}{\sqrt{12x-3}}+\dfrac{8}{\sqrt{4y+1}}=1\end{matrix}\right.\)
b)\(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=4\\x\left(1+4y\right)+y=2\end{matrix}\right.\)
c)\(\left\{{}\begin{matrix}x^2+x+1=3y\\y^2+y+1=3x\end{matrix}\right.\)
Giải hpt:
x2 - 3xy + 2y2= 0
3x + y = 6
\(\left\{{}\begin{matrix}\dfrac{x+y+1}{x+2y}+\dfrac{x+2y}{x+y+1}=2\\3x+y=4\end{matrix}\right.\)
giải hpt
B1: Cho hpt:{ 3x+my=10 { x - y=5
a.tìm m để hpt có nghiêm (x;y) trong đó x = 4 b.tìm m để hpt có nghiệm duy nhất (x;y) thỏa mãn 5x + 2y = 32
B2: Định m để hpt có nghiệm duy nhất là nghiệm nguyên { mx + 2y = m + 1 { 2x + my = 2m - 1
Cho HPT :
( m + 1)x - y = 3
mx + y = m
a) giải HPT khi m = căn 2
b) tìm giá trị của m để HPT có nghiệm duy nhất thỏa mãn x + y > 0
Cho hệ phương trình: \(\left\{{}\begin{matrix}mx-y=2\\x+my=1\end{matrix}\right.\)
a, Giải HPT khi m = 1
b, Gọi nghiệm của HPT là (x;y). Tìm số tự nhiên m để x + y = -1