Chương 3: PHƯƠNG TRÌNH, HỆ PHƯƠNG TRÌNH

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Đức Anh Gamer

Giải hpt \(\left\{{}\begin{matrix}\sqrt{y+3x}+\sqrt{2x+7y}=\sqrt{5x-y}+3\sqrt{x}\\x-4-\sqrt{y-2}=\sqrt{x^3-10x^2+33x-34}-\sqrt{y^3-9y^2+24y-16}\end{matrix}\right.\)

Nguyễn Hoàng Minh
14 tháng 12 2021 lúc 22:23

\(ĐK:x\ge0;y\ge2;5x-y\ge0\\ PT\left(1\right)\Leftrightarrow\sqrt{y+3x}-\sqrt{5x-y}+\sqrt{2x+7y}-3\sqrt{x}=0\\ \Leftrightarrow\dfrac{2y-2x}{\sqrt{y+3x}+\sqrt{5x-y}}+\dfrac{7y-7x}{\sqrt{2x+7y}+3\sqrt{x}}=0\\ \Leftrightarrow\left(y-x\right)\left(\dfrac{2}{\sqrt{y+3x}+\sqrt{5x-y}}+\dfrac{7}{\sqrt{2x+7y}+3\sqrt{x}}\right)=0\\ \Leftrightarrow x=y\left(\dfrac{2}{\sqrt{y+3x}+\sqrt{5x-y}}+\dfrac{7}{\sqrt{2x+7y}+3\sqrt{x}}>0\right)\)

Thay vào \(PT\left(2\right)\Leftrightarrow x-4+\sqrt{x-2}=\sqrt{x^3-10x^2+33x-34}-\sqrt{x^3-9x^2+24x-16}\)

\(\Leftrightarrow\dfrac{x^2-9x+18}{x-4+\sqrt{x-2}}=\dfrac{-x^2+9x-18}{\sqrt{x^3-10x^2+33x-34}+\sqrt{x^3-9x^2+24x-16}}\\ \Leftrightarrow\left(x^2-9x+18\right)\left(\dfrac{1}{x-4+\sqrt{x-2}}+\dfrac{1}{\sqrt{x^3-10x^2+33x-34}+\sqrt{x^3-9x^2+24x-16}}\right)=0\\ \Leftrightarrow x^2-9x+18=0\left(\text{ngoặc lớn luôn }>0,\forall x\ge2\right)\\ \Leftrightarrow\left[{}\begin{matrix}x=y=3\\x=y=6\end{matrix}\right.\)

Vậy ...


Các câu hỏi tương tự
Đức Mai Văn
Xem chi tiết
Đức Anh Gamer
Xem chi tiết
Đức Mai Văn
Xem chi tiết
Tiến Nguyễn Minh
Xem chi tiết
Đạt Trần
Xem chi tiết
Nguyễn Thùy Chi
Xem chi tiết
poppy Trang
Xem chi tiết
Trinh Tuyết Na
Xem chi tiết
poppy Trang
Xem chi tiết