ĐKXĐ: ...
\(\left\{{}\begin{matrix}3xy^2=x^2+2\\3x^2y=y^2+2\end{matrix}\right.\)
Chia vế cho vế:
\(\dfrac{y}{x}=\dfrac{x^2+2}{y^2+2}\Rightarrow y^3+2y=x^3+2x\)
\(\Rightarrow x^3-y^3+2\left(x-y\right)=0\)
\(\Leftrightarrow\left(x-y\right)\left(x^2+xy+y^2+2\right)=0\)
\(\Leftrightarrow x=y\)
Thế vào pt đầu:
\(3x^3=x^2+2\Leftrightarrow3x^3-x^2-2=0\)
\(\Leftrightarrow\left(x-1\right)\left(3x^2+2x+2\right)=0\)
\(\Leftrightarrow x=1\Rightarrow y=1\)