\(\left\{{}\begin{matrix}xy-x-y+1=6\\\dfrac{1}{\left(x-1\right)^2-1}+\dfrac{1}{\left(y-1\right)^2-1}=\dfrac{2}{3}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\left(y-1\right)-\left(y-1\right)=6\\\dfrac{1}{\left(x-1\right)^2-1}+\dfrac{1}{\left(y-1\right)^2-1}=\dfrac{2}{3}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-1\right)\left(y-1\right)=6\\\dfrac{1}{\left(x-1\right)^2-1}+\dfrac{1}{\left(y-1\right)^2-1}=\dfrac{2}{3}\end{matrix}\right.\) \(\Rightarrow\) đặt \(\left\{{}\begin{matrix}x-1=a\\y-1=b\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a.b=6\Rightarrow b=\dfrac{6}{a}\\\dfrac{1}{a^2-1}+\dfrac{1}{b^2-1}=\dfrac{2}{3}\end{matrix}\right.\) \(\Rightarrow\dfrac{1}{a^2-1}+\dfrac{1}{\dfrac{36}{a^2}-1}=\dfrac{2}{3}\)
\(\Rightarrow\dfrac{1}{a^2-1}+\dfrac{a^2}{36-a^2}=\dfrac{2}{3}\Rightarrow a^4-16a^2+36=0\)
\(\Rightarrow\left[{}\begin{matrix}a^2=8+2\sqrt{7}\\a^2=8-2\sqrt{7}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}a=\pm\sqrt{8+2\sqrt{7}}=\pm\left(\sqrt{7}+1\right)\\a=\pm\sqrt{8-2\sqrt{7}}=\pm\left(\sqrt{7}-1\right)\end{matrix}\right.\)
\(x=a+1\Rightarrow\left[{}\begin{matrix}x=2+\sqrt{7}\\x=-\sqrt{7}\\x=\sqrt{7}\\x=2-\sqrt{7}\end{matrix}\right.\) \(\Rightarrow y=\dfrac{6}{a}+1=\left[{}\begin{matrix}\sqrt{7}\\2-\sqrt{7}\\2+\sqrt{7}\\-\sqrt{7}\end{matrix}\right.\)
Vậy hệ đã cho có 4 cặp nghiệm thỏa mãn:
\(\left(x;y\right)=\left(2+\sqrt{7};\sqrt{7}\right)\),\(\left(-\sqrt{7};2-\sqrt{7}\right)\),\(\left(\sqrt{7};2+\sqrt{7}\right)\) ,\(\left(2-\sqrt{7};-\sqrt{7}\right)\)