Giải hệ phương trình: \(\left\{{}\begin{matrix}x^2+xy+y^2=7\\x+2y^3=x^2y\end{matrix}\right.\)
Giai hệ phương trình:
\(\left\{{}\begin{matrix}3xy=2\left(x+y\right)\\4yz=3\left(y+z\right)\\5zx=6\left(z+x\right)\end{matrix}\right.\)
Cho x,y,z>0 tm : \(\left\{{}\begin{matrix}\sqrt{x}+\sqrt{y}+\sqrt{z}=2\\x+y+z=2\end{matrix}\right.\) .Tính:
P= \(\sqrt{\left(x+1\right).\left(y+1\right).\left(z+1\right)}.\left(\frac{\sqrt{x}}{x+1}+\frac{\sqrt{y}}{y+1}+\frac{\sqrt{z}}{z+1}\right)\)
Tính: a)
\(\dfrac{x^2-8x-5\sqrt{x^2-8x+10}+14}{\left(x+1\right)\left(\left(4+\sqrt{22}\right)—x\right)}\)= 0
b) \(\left\{{}\begin{matrix}x+108y=200\\100x-87y=113\end{matrix}\right.\). Tính \(\left(x^2-3y^2\right)^{2018}\).
c) \(\left\{{}\begin{matrix}x^2-y^2=0\\2018x+y=2019\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x\left(x+y\right)+y^2-4y+1=0\\y\left(x+y\right)^2-2x^2-7y=2\end{matrix}\right.\)
Cho x,y,z > 0 và xy+yz+zx=1. Tính
\(P=x.\sqrt{\dfrac{\left(1+y^2\right)\left(1+z^2\right)}{1+x^2}}+y.\sqrt{\dfrac{\left(1+z^2\right)\left(1+x^2\right)}{1+y^2}}+\sqrt{\dfrac{\left(1+x^2\right)\left(1+y^2\right)}{1+z^2}}\)
\(\left\{{}\begin{matrix}x^2-\dfrac{1}{y-1}=2\\2x^2+\dfrac{3}{1-y}=2\end{matrix}\right.\)
Cho x,y,z dương. Chứng minh \(\sqrt{x^2+xy+y^2}+\sqrt{y^2+yz+z^2}+\sqrt{z^2+zx+x^2}\ge\sqrt{3}\left(x+y+z\right)\)
Cho x, y, z dương. Chứng minh rằng: \(\sqrt{x^2+xy+y^2}+\sqrt{y^2+yz+z^2}+\sqrt{z^2+zx+x^2}\ge\sqrt{3}.\left(x+y+z\right)\)