Chương 3: PHƯƠNG TRÌNH, HỆ PHƯƠNG TRÌNH

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
lê thị hoài

giải hệ phương trình

\(\left\{{}\begin{matrix}x^2-y^2+4=2\left(\sqrt{y}-\sqrt{x+2}-2x\right)\\4\sqrt{x+2}+\sqrt{28-3y}=y^2-4x+4\end{matrix}\right.\)

Akai Haruma
6 tháng 1 2020 lúc 17:29

Lời giải:

PT $(1)$:

\(\Leftrightarrow (x^2+4x+4)-y^2=2(\sqrt{y}-\sqrt{x+2})\)

\(\Leftrightarrow (x+2)^2-y^2=2(\sqrt{y}-\sqrt{x+2})(*)\)

Nếu $\sqrt{y}+\sqrt{x+2}=0\Rightarrow y=x+2=0$

$\Rightarrow y=0; x=-2$. Thay vào PT $(2)$ thấy không thỏa mãn (loại)

Nếu $\sqrt{y}+\sqrt{x+2}>0$:

$(*)\Leftrightarrow (x+2-y)(x+2+y)=2.\frac{y-(x+2)}{\sqrt{y}+\sqrt{x+2}}$

$\Leftrightarrow (x+2-y)\left[x+2+y+\frac{2}{\sqrt{y}+\sqrt{x+2}}\right]=0$

Dễ thấy với mọi $\sqrt{y}+\sqrt{x+2}$ thì biểu thức trong ngoặc vuông luôn lớn hơn $0$

Do đó $x+2-y=0\Rightarrow x+2=y$

Thay vào PT $(2)$:

$4\sqrt{x+2}+\sqrt{22-3x}=x^2+8$

\(\Leftrightarrow 4\sqrt{x+2}+\sqrt{22-3x}=x^2+8\)

\(\Leftrightarrow 4(\sqrt{x+2}-2)+(\sqrt{22-3x}-4)=x^2-4\)

\(\Leftrightarrow 4.\frac{x-2}{\sqrt{x+2}+2}-\frac{3(x-2)}{\sqrt{22-3x}+4}=(x-2)(x+2)\)

\(\Leftrightarrow (x-2)\left[\frac{4}{\sqrt{x+2}+2}-\frac{3}{\sqrt{22-3x}+4}-(x+2)\right]=0\)

\(\Leftrightarrow (x-2)\left[\frac{4}{\sqrt{x+2}+2}-\frac{4}{3}-(\frac{3}{\sqrt{22-3x}+4}-\frac{1}{3})-(x+1)\right]=0\)

\(\Leftrightarrow (x-2)\left[\frac{-4(x+1)}{3\sqrt{x+2}+2)(\sqrt{x+2}+1)}-\frac{3(x+1)}{3(\sqrt{22-3x}+4)(5+\sqrt{22-3x})}-(x+1)\right]=0\)

\(\Leftrightarrow (x-2)(x+1)\left[\frac{-4}{.....}-\frac{3}{.....}-1\right]=0\)

Dễ thấy biểu thức trong ngoặc vuông luôn âm nên $(x-2)(x+1)=0\Rightarrow x=2$ hoặc $x=-1$

Với $x=2\rightarrow y=x+2=4$

Với $x=-1\rightarrow y=x+2=1$

Khách vãng lai đã xóa
lê thị hoài
5 tháng 1 2020 lúc 15:14

Akai Haruma giúp em

Khách vãng lai đã xóa

Các câu hỏi tương tự
poppy Trang
Xem chi tiết
poppy Trang
Xem chi tiết
Đức Mai Văn
Xem chi tiết
Nguyễn Khánh Linh
Xem chi tiết
Kimian Hajan Ruventaren
Xem chi tiết
Kimian Hajan Ruventaren
Xem chi tiết
Đức Mai Văn
Xem chi tiết
Little Cat Quỳnh
Xem chi tiết
Nguyễn Thanh Giang
Xem chi tiết