Tru (1) cho (2) , ta dc:
x2-y2=4y-4x
⇔(x-y)(x+y)=-4(x-y)
⇔(x-y)(x+y+4)=0
⇔[x=y ; x=-4-y
+) Vs x=y the vao (1)
y2-3y2=4y
⇔[y=0 => x=0 ; y=-2 => x=-2
+) Vs x=-4-y the (2)
y2-3(-4-y)y=4(-4-y)
⇔y=-2 =>x=-2
Tru (1) cho (2) , ta dc:
x2-y2=4y-4x
⇔(x-y)(x+y)=-4(x-y)
⇔(x-y)(x+y+4)=0
⇔[x=y ; x=-4-y
+) Vs x=y the vao (1)
y2-3y2=4y
⇔[y=0 => x=0 ; y=-2 => x=-2
+) Vs x=-4-y the (2)
y2-3(-4-y)y=4(-4-y)
⇔y=-2 =>x=-2
Giải hệ phương trình :\(\left\{{}\begin{matrix}4x^2-xy=2\\y^2-3xy=-2\end{matrix}\right.\)
giải hệ phương trình:
1, \(\left\{{}\begin{matrix}\sqrt{3+2x^2y-x^4y^2}+x^2\left(1-2x^2\right)=y^4\\1+\sqrt{1+\left(x-y\right)^2}=-x^2\left(x^4+1-2x^2-2xy^2\right)\end{matrix}\right.\)
2, \(\left\{{}\begin{matrix}\sqrt{x-1}+\sqrt{x}\left(3\sqrt{x}-y\right)+x\sqrt{x}=3y+\sqrt{y-1}\\3xy^2+4=4x^2+2y+x\end{matrix}\right.\)
Giải hệ phương trình sau: \(\left\{{}\begin{matrix}4x^{2^{ }}-xy=2\\y^2-3xy=-2\end{matrix}\right.\)
Giải hệ phương trình:
\(\left\{{}\begin{matrix}2x^2+y^2-3xy-4x+3y+2=0\\\sqrt{x^2-y+3}+\sqrt{y-x+1}=2\end{matrix}\right.\)
Giải hệ phương trình sau: \(\left\{{}\begin{matrix}9x^2-3xy+2y^2=23\\7x^2+6xy-8y^2=-37\end{matrix}\right.\)
Help me!!!
Giải hệ phương trình: \(\left\{{}\begin{matrix}x^3-y^3+2x^2+4y^2+5-0\\x^2+2y^2+4x-13y+7=0\end{matrix}\right.\)
Giải hệ
\(\left\{{}\begin{matrix}x^3+y^3=2\\x^2y+3xy^2+2y^3=6\end{matrix}\right.\)
\(\left\{{}\begin{matrix}2x^2+y^2-3xy+3x-2y+1=0\\4x^2-y^2+x+4=\sqrt{2x+y}+\sqrt{x+4y}\end{matrix}\right.\)
Giải hpt:
a)\(\left\{{}\begin{matrix}x^4+4x^2y+y^2=6x^2\\x^2+x+y=3xy\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}x^2\left(y^2+2\right)+2y\left(x^2+x+1\right)=3\\\left(x^2+x\right)\left(y^2+y\right)=1\end{matrix}\right.\)