Đặt \(\left\{{}\begin{matrix}\left|x\right|=a\ge0\\\left|y\right|=b\ge0\end{matrix}\right.\) ta được hệ:
\(\left\{{}\begin{matrix}a=b^2-b\\b=a^2-a\end{matrix}\right.\)
Trừ vế cho vế: \(a-b=b^2-b-\left(a^2-a\right)\)
\(\Leftrightarrow a^2-b^2=0\)
\(\Leftrightarrow\left(a-b\right)\left(a+b\right)=0\)
\(\Leftrightarrow a=b\)
Thay vào pt đầu: \(a=a^2-a\Rightarrow\left[{}\begin{matrix}a=0\\a=2\end{matrix}\right.\)
\(\Rightarrow\left(x;y\right)=\left(0;0\right);\left(2;2\right);\left(-2;-2\right);\left(-2;2\right);\left(2;-2\right)\)