Giải hệ phương trình: \(\left\{{}\begin{matrix}6x^2-y^2-xy+5x+5y-6=0\\20x^2-y^2-28x+9=0\end{matrix}\right.\)
giải hệ phương trình
a, \(\left\{{}\begin{matrix}2y^2+xy-x^2=0\\x^2-xy-y^2+3x+7y+3=0\end{matrix}\right.\)
b, \(\left\{{}\begin{matrix}1+x^3y^3=19y^2\\y\left(1+xy\right)=-6x^2\end{matrix}\right.\)
Giải hệ pt
a) \(\left\{{}\begin{matrix}x^3+6x^2y=7\\2y^3+3xy^2=5\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}6x-xy-2=0\\2\sqrt{\left(x+2\right)\left(3x-y\right)}=y+6\end{matrix}\right.\)
Giải hệ phương trình sau
a. \(\left\{{}\begin{matrix}x^2+y^2+2\left(x+y\right)=23\\x+y+xy=11\end{matrix}\right.\)
b. \(\left\{{}\begin{matrix}x^2+4x+y=0\\\left(x+2\right)^2+5y=16\end{matrix}\right.\)
c. \(\left\{{}\begin{matrix}x+y+\frac{1}{x}+\frac{1}{y}=5\\x^2+y^2+\frac{1}{x^2}+\frac{1}{y^2}=9\end{matrix}\right.\)
Giải hpt : a) \(\left\{{}\begin{matrix}\left(x^2+y^2\right)\left(x+y+1\right)=25\left(y+1\right)\\x^2+xy+2y^2+x-8y=9\end{matrix}\right.\) b) \(\left\{{}\begin{matrix}x^2+y^2+6xy-\frac{1}{\left(x-y\right)^2}+\frac{9}{8}=0\\2y-\frac{1}{x-y}+\frac{5}{4}=0\end{matrix}\right.\)
c) \(\left\{{}\begin{matrix}\frac{x}{x^2-y}+\frac{5y}{x+y^2}=4\\5x+y+\frac{x^2-5y^2}{xy}=5\end{matrix}\right.\) d) \(\left\{{}\begin{matrix}3xy+y+1=21x\\9x^2y^2+3xy+1=117x^2\end{matrix}\right.\)
e) \(\left\{{}\begin{matrix}x\left(x^2-y^2\right)+x^2=1\sqrt{\left(x-y^2\right)^3}\\76x^2-20y^2+2=\sqrt[3]{4x\left(8x+1\right)}\end{matrix}\right.\)
Giải hệ phương trình: \(\left\{{}\begin{matrix}2x^2+2xy+y-5=0\\y^2+xy+5x-7=0\end{matrix}\right.\)
Giải hệ phương trình:
1, \(\left\{{}\begin{matrix}\left(17-3x\right)\sqrt{5-x}+\left(3y-14\right)\sqrt{4-y}=0\\2\sqrt{2x+y+5}+3\sqrt{3x+2y+11}=x^2+6x+13\end{matrix}\right.\)
2, \(\left\{{}\begin{matrix}x\left(x+y\right)+\sqrt{x+y}=\sqrt{2y}\left(\sqrt{2y^3}+1\right)\\x^2y-5x^2+7\left(x+y\right)-4=6\sqrt[3]{xy-x+1}\end{matrix}\right.\)
3, \(\left\{{}\begin{matrix}\sqrt{x}+\sqrt[4]{32-x}-y^2+3=0\\\sqrt[4]{x}+\sqrt{32-x}+6y-24=0\end{matrix}\right.\)
Giải hệ
\(\left\{{}\begin{matrix}x^2+xy+y^2=3\\x^2+2xy-7x-5y+9=0\end{matrix}\right.\)
1, Giải các hệ phương trình sau
a, \(\left\{{}\begin{matrix}\left(x+y\right)^2-2xy=26\\x+y=6\end{matrix}\right.\)
b,\(\left\{{}\begin{matrix}2x^2+x-y=0\\xy+3y-5x=7\end{matrix}\right.\)
c, \(\left\{{}\begin{matrix}\left(x-1\right)^2=1-y\\\left(x^2-y\right)^2=2xy\left(1+x\right)\end{matrix}\right.\)
d, \(\left\{{}\begin{matrix}x^2y+y^2x=2\\x^3+y^3+6=8x^2y^2\end{matrix}\right.\)