Giải hệ phương trình :
\(\begin{cases}2+9.3^{x^2-2y}=\left(2+9^{x^2-2y}\right).5^{2y-x^2+2}\\4^x+4=4x+4\sqrt{2y-2x+4}\end{cases}\)
Giải hệ phương trình: \(\begin{cases}\sqrt{x^2+2x+6}-y=1\\x^2+xy+y^2=7\end {cases} \)
Giải hpt:
\(\begin{cases}2^{\sqrt{x^2-y}}+2^{\frac{-1}{\sqrt{x^2-y}}}=\frac{5}{2}\\4x\sqrt{y}-\sqrt{x\left(y+9\right)}=4y-x-2\end{cases}\)
Giải các phương trình và hệ phương trình sau:
a) x2 - \(2\sqrt{5}\)x + 5 = 0
b) 4x4 - 5x2 - 9 = 0
c) \(\begin{cases}2x+5y=-1\\3x-2y=8\end{cases}\)
d) x ( x + 3 ) = 15 - ( 3x - 1 )
GIẢI HỆ PHƯƠNG TRÌNH
(GIẢI GIÚP EM VS MỌI NGƯỜI)
1, \(\begin{cases} x(y+z)=8 \\ y(x+z)=18\\ z(x+y)=20 \end{cases}\)
2, \(\begin{cases} \dfrac{xy}{x+y} =\dfrac{8}{3}\\ \dfrac{yz}{z+y} =\dfrac{12}{5}\\ \dfrac{xz}{x+z} =\dfrac{24}{7} \end{cases} \)
3, \(\begin{cases} x^{2} + 2yz=x\\ y^{2} + 2xz=y\\ z^{2} + 2xy=z\\ \end{cases}\)
4, \(\begin{cases} \dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z} =2\\ \dfrac{2}{xy} -\dfrac{1}{z^{2}} =4 \end{cases} \)
Giải hệ phương trình sau:
\(\left\{{}\begin{matrix}\sqrt{x^2+3x+2}-\sqrt{x+1}=2y\sqrt{y^2+1}+9-y-6y^2\\\sqrt{x^2+3x+2}+3\sqrt{x+1}=y\sqrt{y^2+1}-6+3y+4y^2\end{matrix}\right.\)
\(\begin{cases}2\sqrt{5-x-y}+2x=3\sqrt{\left(x+1\right)\left(2-y+y\right)}\\\left(x-y\right)^2+x+y=2\end{cases}\left(x,y\in R\right)\)
giúp mình bài này với mình đang cần gấp
1/ tìm nghiệm pt/bpt sau
a/ x2 + \(\sqrt[3]{x^4-x^2}\) =2x +1
b/ \(\begin{cases}2x^2-y^2=1\\x^2+xy=2\end{cases}\)
2/ hệ có nghiệm duy nhất khi a=
\(\begin{cases}x+y=6\\x^2+y^2=a\end{cases}\)
Giải các hệ
\(\left\{{}\begin{matrix}\sqrt{x+y}+\sqrt{2x+y+2}=7\\3x+2y=23\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x^2+y+x^3y+xy^2+xy=\frac{-5}{4}\\x^4+y^2+xy\left(1+2x\right)=\frac{-5}{4}\end{matrix}\right.\)
\(\left\{{}\begin{matrix}\left(x^2+1\right)+y\left(x+y\right)=7y\\\left(x^2+1\right)\left(x+y-2\right)=-y\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x\left(x+y+1\right)=3\\\left(x+y\right)^2-\frac{5}{x^2}=-1\end{matrix}\right.\)