Giải các hệ
\(\left\{{}\begin{matrix}\sqrt{x+y}+\sqrt{2x+y+2}=7\\3x+2y=23\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x^2+y+x^3y+xy^2+xy=\frac{-5}{4}\\x^4+y^2+xy\left(1+2x\right)=\frac{-5}{4}\end{matrix}\right.\)
\(\left\{{}\begin{matrix}\left(x^2+1\right)+y\left(x+y\right)=7y\\\left(x^2+1\right)\left(x+y-2\right)=-y\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x\left(x+y+1\right)=3\\\left(x+y\right)^2-\frac{5}{x^2}=-1\end{matrix}\right.\)
Giải hpt:
\(\begin{cases}2^{\sqrt{x^2-y}}+2^{\frac{-1}{\sqrt{x^2-y}}}=\frac{5}{2}\\4x\sqrt{y}-\sqrt{x\left(y+9\right)}=4y-x-2\end{cases}\)
Giải hệ phương trình sau:\(\left\{{}\begin{matrix}\left(x-y+3\right)\sqrt{x+2}=\sqrt{y}\\x^2+\left(x+3\right)\left(2x-y+5\right)=x+16\end{matrix}\right.\)
1) \(\left\{{}\begin{matrix}xy+x+y=x^2-2y^2\\x\sqrt{2y}-y\sqrt{x-1}=2x-2y\end{matrix}\right.\)
2) \(\left\{{}\begin{matrix}2x^2+y^2-3xy+3x-2y+1=0\\4x^2-y^2+x+4=\sqrt{2x+y}+\sqrt{x+4y}\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x\left(x+21\right)+y\left(x-33\right)=2\left(y^2+50\right)\\\sqrt{x+2}+2\sqrt{y+11}=\sqrt{\left(4y-x+14\right)^3}\end{matrix}\right.\)
\(\left\{{}\begin{matrix}y^3-4y^2+4y=\sqrt{x+1}\left(y^2-5y+4+\sqrt{x+1}\right)\\2\sqrt{x^2-3x+3}+6x-7=y^2\left(x-1\right)^2+\left(y^2-1\right)\sqrt{3x-2}\end{matrix}\right.\)
hệ phương trình
1, \(\left\{{}\begin{matrix}3x=6\\x-3y=2\end{matrix}\right.\)
2,\(\left\{{}\begin{matrix}3x+5y=15\\2y=-7\end{matrix}\right.\)
3, \(\left\{{}\begin{matrix}7x-2y=1\\3x+y=6\end{matrix}\right.\)
4, \(\left\{{}\begin{matrix}3\left(x+y\right)+9=2\left(x-y\right)\\2\left(x+y\right)=3\left(x-y\right)+11\end{matrix}\right.\)
5 , \(\left\{{}\begin{matrix}3\left(x+y\right)+5\left(x-y\right)=12\\-5\left(x+y\right)+2\left(x-y\right)=11\end{matrix}\right.\)
6 , \(\left\{{}\begin{matrix}2\left(3x-2\right)-4=5\left(3y+2\right)\\4\left(3x-2\right)+7\left(3y+2\right)=-2\end{matrix}\right.\)
7, \(\left\{{}\begin{matrix}\frac{1}{x}+\frac{1}{y}=\frac{4}{5}\\\frac{1}{x}-\frac{1}{y}=\frac{1}{5}\end{matrix}\right.\)
8 , \(\left\{{}\begin{matrix}\frac{15}{x}-\frac{7}{y}=9\\\frac{4}{x}+\frac{9}{y}=35\end{matrix}\right.\)
giải hệ phương trình : \(\left\{{}\begin{matrix}x^2+xy-2y^2+3y=1\\x\sqrt{x-y}-x+y=1\end{matrix}\right.\)\(\left(x,y\in R\right)\)
\(\left\{{}\begin{matrix}1+\left|y\right|=\sqrt{x^2}+2x+2\\y^2+\left(m-1\right)\left(x^2-2x\right)=m^2-4m+3\end{matrix}\right.\)
tìm m để hệ phương trình có nghiệm duy nhất