Sorry nhiều nhiều mk làm sai :
A = \(1-\left(\dfrac{1}{2}\right)^{20}=\dfrac{2^{20}}{2^{20}}-\dfrac{1}{2^{20}}=\dfrac{2^{20}-1}{2^{20}}\)
KL Đáp án A
Đặt A = \(\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2+\left(\dfrac{1}{2}\right)^3+\left(\dfrac{1}{2}\right)^4+...+\left(\dfrac{1}{2}\right)^{20}\)
=> \(\dfrac{1}{2}A=\)\(\left(\dfrac{1}{2}\right)^2+\left(\dfrac{1}{2}\right)^3+\left(\dfrac{1}{2}\right)^4+...+\left(\dfrac{1}{2}\right)^{21}\)
Nên A - \(\dfrac{1}{2}A=\)\(\dfrac{1}{2}-\left(\dfrac{1}{2}\right)^{21}\)
=> \(\dfrac{1}{2}A=\)\(\dfrac{1}{2}-\left(\dfrac{1}{2}\right)^{21}\)
=> \(\dfrac{1}{2}A=\)\(\dfrac{1}{2}.\left[1-\left(\dfrac{1}{2}\right)^{20}\right]\)
Do đó : A = \(1-\left(\dfrac{1}{2}\right)^{20}\)
KL: Đáp án D