a) \(x^2-15=\left(x-\sqrt{15}\right)\left(x+\sqrt{15}\right)\)
d) \(x-6\sqrt{x}+9-\left(\sqrt{x}-1\right)^2=\left(\sqrt{x}-3\right)^2-\left(\sqrt{x}-1\right)^2=\left(\sqrt{x}-3-\sqrt{x}+1\right)\left(\sqrt{x}-3+\sqrt{x}-1\right)=-2\left(2\sqrt{x}-4\right)=-4\left(\sqrt{x}-2\right)\)



