b, \(\sqrt[3]{24+x}+\sqrt{12-x}=6\) (đk \(-24\le x\le12\)) (*)
Đặt \(\sqrt[3]{24+x}=a\) , \(\sqrt{12-x}=b\left(b\ge0\right)\)
Có \(a^3+b^2=24+x+12-x=36\)(1)
a+b=6 => b=6-a
Thay b=6-a vào (1) có:
\(a^3+\left(6-a\right)^2=36\)
<=> \(a^3+a^2-12a+36=36\)
<=> \(a^3+a^2-12a=0\)
<=> \(a\left(a^2+a-12\right)=0\)
<=> \(a\left(a^2-3a+4a-12\right)=0\)
<=> \(a\left(a+4\right)\left(a-3\right)=0\)
=>\(\left[{}\begin{matrix}a=0\\a=-4\\a=3\end{matrix}\right.\)<=> \(\left[{}\begin{matrix}24+x=0\\24+x=-4^3=-64\\24+x=3^3=27\end{matrix}\right.\)<=>\(\left[{}\begin{matrix}x=-24\\x=-88\\x=3\end{matrix}\right.\)(tm pt(*))
Vậy pt (*) có tập nghiệm \(S=\left\{-24,-88,3\right\}\)