a: =>(x-2)(2x+5)=0
=>x-2=0 hoặc 2x+5=0
=>x=2 hoặc x=-5/2
c: \(\dfrac{2x}{x-1}-\dfrac{x}{x+1}=1\)
=>\(\dfrac{2x^2+2x-x^2+x}{x^2-1}=1\)
=>x^2+3x=x^2-1
=>3x=-1
=>x=-1/3
a: =>(x-2)(2x+5)=0
=>x-2=0 hoặc 2x+5=0
=>x=2 hoặc x=-5/2
c: \(\dfrac{2x}{x-1}-\dfrac{x}{x+1}=1\)
=>\(\dfrac{2x^2+2x-x^2+x}{x^2-1}=1\)
=>x^2+3x=x^2-1
=>3x=-1
=>x=-1/3
Giải bất phương trình:
a) 1 + \(\dfrac{x+1}{3}\) > \(\dfrac{2x-1}{6}\) - 2
b) \(\dfrac{5x^2-3}{5}\) + \(\dfrac{3x-1}{4}\) < \(\dfrac{x\left(2x+3\right)}{2}\) - 5
Giải bất phương trình:
\(\dfrac{15x-2}{4}\) - \(\dfrac{x^2+1}{3}\) > \(\dfrac{x\left(1-2x\right)}{6}\) + \(\dfrac{x-3}{2}\)
Bài 1:Giải phương trình sau:
\(8\left(x+\dfrac{1}{x}\right)^2+4\left(x^2+\dfrac{1}{x^2}\right)^2-4\left(x^2+\dfrac{1}{x^2}\right)\left(x+\dfrac{1}{x}\right)^2=\left(x+4\right)^2\)
Bài 2:Giải bất phương trình sau:
a,\(2x\left(6x-1\right)>\left(3x-2\right)\left(4x+3\right)\)
b,\(\dfrac{2\left(x+1\right)}{3}-2\ge\dfrac{x-2}{2}\)
\(\dfrac{3x-1}{x-1}-\dfrac{2x+5}{x+3}+\dfrac{4}{x^2+2x-3}=1\)
1)4x-20=0 ; 2) 5x+15=0 ; 3) 3x-5=7x+2 ; 4) 4x-(x-1)=2(1+x) ; 5) x2 -2x=0 ; 6) 2(3x-5)-3(x-2)=3(x+4) ; 7) (x+3)(2x-7)=0
8) 5x(x-3)+2x-6=0 ; 9) (3x-1)(2x-1)-(3x-1)(x+2)=0
10)|2x-1|+1=8 ; 11) |x-2|=3x+1 ; 12) |2x|=21-x
Giải các phương trình nha mọi người ^_^
giải phương trình
\(8\left(x+\dfrac{1}{x}\right)^2+4\left(x^2+\dfrac{1}{x^2}\right)-4\left(x^2+\dfrac{1}{x^2}\right)\left(x+\dfrac{1}{x}\right)\) = (x+4)2
\(\dfrac{-3}{x+2}\) \(-\)\(\dfrac{2}{x-2}\) + \(\dfrac{4x}{x^2-4}\) (với x \(\ne\) 2 và x \(\ne\) \(-\) 2).
a Rút gọn biểu thức B.
b Tìm x để B = \(\dfrac{1}{4}\)
B=(\(\dfrac{2x+x^2}{x^3-1}\)-\(\dfrac{1}{x-1}\)):(1-\(\dfrac{x+2}{x^2+x+1}\))
a0 Tính B=6
b.Tìm x để B=1
1. Giải phương trình: \(\dfrac{x-3}{2011}\) + \(\dfrac{x-2}{2012}\) = \(\dfrac{x-2012}{2}\) +\(\dfrac{x-2011}{3}\)
2.Chứng tỏ phương trình sau vô nghiệm: x2 + 1= x