Bài 1:Giải phương trình sau:
\(8\left(x+\dfrac{1}{x}\right)^2+4\left(x^2+\dfrac{1}{x^2}\right)^2-4\left(x^2+\dfrac{1}{x^2}\right)\left(x+\dfrac{1}{x}\right)^2=\left(x+4\right)^2\)
Bài 2:Giải bất phương trình sau:
a,\(2x\left(6x-1\right)>\left(3x-2\right)\left(4x+3\right)\)
b,\(\dfrac{2\left(x+1\right)}{3}-2\ge\dfrac{x-2}{2}\)
Giải bất phương trình:
\(\dfrac{15x-2}{4}\) - \(\dfrac{x^2+1}{3}\) > \(\dfrac{x\left(1-2x\right)}{6}\) + \(\dfrac{x-3}{2}\)
Giải bất phương trình:
a) 1 + \(\dfrac{x+1}{3}\) > \(\dfrac{2x-1}{6}\) - 2
b) \(\dfrac{5x^2-3}{5}\) + \(\dfrac{3x-1}{4}\) < \(\dfrac{x\left(2x+3\right)}{2}\) - 5
giải các phương trình sau:
a)2x(x-2)+5(x-2)=0
b)\(\dfrac{3x-4}{2}-\dfrac{4x+1}{3}\)
c)\(\dfrac{2x}{x-1}-\dfrac{x}{x+1}=1\)
\(\dfrac{-3}{x+2}\) \(-\)\(\dfrac{2}{x-2}\) + \(\dfrac{4x}{x^2-4}\) (với x \(\ne\) 2 và x \(\ne\) \(-\) 2).
a Rút gọn biểu thức B.
b Tìm x để B = \(\dfrac{1}{4}\)
\(\dfrac{3x-1}{x-1}-\dfrac{2x+5}{x+3}+\dfrac{4}{x^2+2x-3}=1\)
cho biểu thức A=(\(\dfrac{x^{2^{ }}}{x^3-4x}+\dfrac{6}{6-3x}+\dfrac{1}{x+2}\) ) : ( x-2 + \(\dfrac{10-x^2}{x+2}\) )
a) tìm điều kiện của x để A xác định
b) rút gọn biểu thức A
c) tìm giá trị của x để a>0
giúp mình với nha
giải phương trình
\(8\left(x+\dfrac{1}{x}\right)^2+4\left(x^2+\dfrac{1}{x^2}\right)-4\left(x^2+\dfrac{1}{x^2}\right)\left(x+\dfrac{1}{x}\right)\) = (x+4)2
Giải phương trình: \(\dfrac{1}{x-1}\)+\(\dfrac{1}{x-2}\)=\(\dfrac{1}{x+2}\)+\(\dfrac{1}{x+1}\)