c: \(\Leftrightarrow2x+2x-6=12-2x\)
=>4x-6=12-2x
=>6x=18
hay x=3
b: \(\Leftrightarrow\left(x-1\right)\left(x+1\right)+x=2x-1\)
\(\Leftrightarrow x^2-1+x=2x-1\)
=>x2-x=0
=>x(x-1)=0
=>x=0(loại) hoặc x=1(nhận)
c: \(\Leftrightarrow2x+2x-6=12-2x\)
=>4x-6=12-2x
=>6x=18
hay x=3
b: \(\Leftrightarrow\left(x-1\right)\left(x+1\right)+x=2x-1\)
\(\Leftrightarrow x^2-1+x=2x-1\)
=>x2-x=0
=>x(x-1)=0
=>x=0(loại) hoặc x=1(nhận)
Giải phương trình sau:
a) \(\sqrt{4x+20}-3\sqrt{5+x}+\dfrac{4}{3}\sqrt{9x+45}=6\)
b) \(\dfrac{1}{2}\sqrt{x-1}-\dfrac{3}{2}\sqrt{9x-9}+24\sqrt{\dfrac{x-1}{64}}=-17\)
c) \(2x-x^2+\sqrt{6x^2-12x+7}=0\)
d) \(\left(x+1\right)\left(x+4\right)-3\sqrt{x^2+5x+2}=6\)
Bài 1: Rút gọn: A= \(\left(\dfrac{x}{x^2-49}-\dfrac{x-7}{x^2+7x}\right):\dfrac{2x-7}{x^2+7x}+\dfrac{x}{7-x}\)
Bài 2: Rút gọn: B=\(\left[\dfrac{3}{x+1}+\left(\dfrac{3}{x}-\dfrac{x}{x^2+2x+1}\right):\dfrac{2x^2+3x}{x+1}\right]:\dfrac{1+3x}{x^2+x}\)
Bài 3: Rút gọn D=\(\left(\sqrt{a}+\dfrac{b-\sqrt{ab}}{\sqrt{a}+b}\right):\left(\dfrac{a}{\sqrt{ab}+b}+\dfrac{b}{\sqrt{ab}-a}-\dfrac{a+b}{\sqrt{ab}}\right)\)
Giair các phương trình và hệ phương trình sau:
a) \(\left\{{}\begin{matrix}\dfrac{3x-1}{x+2}+\dfrac{2y+3}{y-2}=6\\\dfrac{2x+5}{x+2}-\dfrac{3y-1}{y-2}=2\end{matrix}\right.\)
b) \(3\left(\sqrt{x+3}+\sqrt{6-5x}\right)=2x^2+7\)
mọi người ơi giúp mình với , mình đang cần rất gấp
Rút gọn bt sau
a)\(\dfrac{2x+1}{x\sqrt{x}-1}+\dfrac{1}{1-\sqrt{x}}\)
b)\(\dfrac{\sqrt{x}-4}{x-2\sqrt{x}}-\dfrac{3}{2-\sqrt{x}}\)
c)\(\dfrac{x\sqrt{x}+1}{x-1}-\dfrac{x-1}{\sqrt[]{x}-1}\)
d)\(\dfrac{\sqrt{x}}{\sqrt{x}+2}-\dfrac{3}{2-\sqrt{x}}+\dfrac{3\sqrt{x}-2}{x-4}\)
e)\(\dfrac{x+2\sqrt{x}-10}{x-\sqrt{x}-6}-\dfrac{\sqrt{x}-2}{\sqrt{x}-3}-\dfrac{1}{\sqrt{x}-2}\)
Giải phương trình
a, \(\sqrt{x-1+4\sqrt{x-5}}+\sqrt{11+x+8\sqrt{x-5}}=0\)
b, \(\sqrt{x+2-3\sqrt{2x-5}}+\sqrt{x-2+\sqrt{2x-5}}=\sqrt{8}\)
c. \(\sqrt[3]{\left(65+x\right)^2}+4\sqrt[3]{\left(65-x\right)^2}=5\sqrt[3]{65^2-x^2}\)
d, \(\sqrt{\dfrac{x^2+x+1}{x}}+\sqrt{\dfrac{x}{x^2+x+1}}=\dfrac{7}{4}\)
cho x,y,z là các số dương thoả mãn \(\dfrac{1}{x+y}+\dfrac{1}{y+z}+\dfrac{1}{z+x}\)=6
Chứng minh \(\dfrac{1}{3x+3y+2z}+\dfrac{1}{3x+2y+3z}+\dfrac{1}{2x+3y+3z}\)≤\(\dfrac{3}{2}\)
Rút gọn các biểu thức sau:
\(A=\left(\dfrac{1}{\sqrt{x}-3}+\dfrac{1}{\sqrt{x}+3}\right)\left(1-\dfrac{3}{\sqrt{x}}\right)\)
\(B=\left(\dfrac{\sqrt{x}}{\sqrt{x}-2}+\dfrac{1}{\sqrt{x}+2}+\dfrac{6-7\sqrt{x}}{x-4}\right)\left(\sqrt{x}+2\right)\)
\(C=\left(\dfrac{\sqrt{a}}{\sqrt{a}-1}-\dfrac{\sqrt{a}}{a-\sqrt{1}}\right):\dfrac{\sqrt{a}+1}{a-1}\)
\(D=\left(\dfrac{x-2}{x+2\sqrt{x}}+\dfrac{1}{\sqrt{x}+2}\right).\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)
\(E=\left(1+\dfrac{x+\sqrt{x}}{\sqrt{x}+1}\right)\left(1+\dfrac{x-\sqrt{x}}{1-\sqrt{x}}\right)\)
giúp mình với ạ!mình đang cần gấp
Rút gọn A= \(\left(\dfrac{2}{\sqrt{x-2}}+\dfrac{3}{2\sqrt{x}+1}-\dfrac{5\sqrt{x}-7}{2x-3\sqrt{x}-2}\right):\dfrac{2\sqrt{x}+3}{3x-6\sqrt{x}}\left(x>0;x\ne4\right)\)
Tính DKXD của các căn bậc thức sau:
a)\(\sqrt{2x-4}\)
b)\(\sqrt{\dfrac{3}{-2x+1}}\)
c)\(\sqrt{\dfrac{-3x+5}{-4}}\)
d)\(\sqrt{-5\left(-2x+6\right)}\)
e)\(\sqrt{\left(x^2+2\right)\left(x-3\right)}\)
f)\(\sqrt{\dfrac{x^2+5}{-x+2}}\)