\(a,\left(2x-1\right)^2=49\)
\(\left[{}\begin{matrix}2x-1=7\\2x-1=-7\end{matrix}\right.\)
\(\left[{}\begin{matrix}2x=8\\2x=-6\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=4\\x=-3\end{matrix}\right.\)
\(b,\left(2x+7\right)^2=9\left(x+2\right)^2\)
\(4x^2+28x+49=9x^2+36x+36\)
\(4x^2+28x+49-9x^2-36x-36=0\)
\(-5x^2-8x+13=0\)
\(5x^2+13-5x-13=0\)
\(x\left(5x+13\right)-1\left(5x+13\right)=0\)
\(\left(x-1\right)\left(5x+13\right)=0\)
\(\left[{}\begin{matrix}x=1\\5x=-13\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=1\\x=-\frac{13}{5}\end{matrix}\right.\)
\(c,4\left(2x+7\right)^2-9\left(x+3\right)^2=0\)
\(\left[2\left(2x+7\right)\right]^2-\left[3\left(x+3\right)\right]^2=0\)
\(\left(4x+14\right)^2-\left(3x+9\right)^2=0\)
\(4\left(2x+7\right)^2-9\left(x+3\right)^2=0\)
\(x=-5\)
\(d,\left(5x-3\right)^2-\left(4x-7\right)^2=0\)
\(25x^2-30x+9-16x^2+56x-49=0\)
\(9x^2+26x-40=0\)
\(9x^2+36x-10x-40=0\)
\(9x\left(x+4\right)-10\left(x+4\right)=0\)
\(\left(9x-10\right)\left(x+4\right)=0\)
\(\left[{}\begin{matrix}9x-10=0\\x+4=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=\frac{10}{9}\\x=-4\end{matrix}\right.\)
e)
\(\left(x+2\right)^2=9\cdot\left(x^2-4x+4\right)\\ \Leftrightarrow x^2+4x+4-9x^2+32x-32=0\\ \Leftrightarrow-8x^2+36x-28=0\\ \Leftrightarrow-2x^2+9x-7=0\\ \Leftrightarrow-7+7x+2x-2x^2=0\\ \Leftrightarrow-7\cdot\left(1-x\right)+2x\cdot\left(1-x\right)=0\\ \Leftrightarrow\left(-7+2x\right)\cdot\left(1-x\right)=0\\ \Rightarrow\left[{}\begin{matrix}-7+2x=0\\1-x=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\frac{7}{2}\\x=1\end{matrix}\right.\)
\(e,\left(x+2\right)^2=9\left(x^2-4x+4\right)\)
\(x^2+4x+4=9x^2-36x+36\)
\(x^2+4x+4-9x^2+36x-36=0\)
\(-8x^2+40x-32=0\)
\(-8\left(x-4\right)\left(x-1\right)=0\)
\(\left(x-4\right)\left(x-1\right)=0\)
\(\left[{}\begin{matrix}x=4\\x=1\end{matrix}\right.\)