Bài 4: Ôn tập chương Hàm số lượng giác và phương trình lượng giác

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Lê Ngọc Nhả Uyên

Giải các phương trình sau:

a) Cot2x - (1 + \(\sqrt{3}\) )Cotx + \(\sqrt{3}\) = 0

b) 2Sin22x + Sin2x - 1 = 0

c) tan2(x+1) + tan(x+1) - 2 = 0

d) Sin2x + Cosx +1 =0

e) 3cos2x - 5Sinx - 1 = 0

f) 2Cos2x - Cosx + 7 = 0

g) Sin4x + Cos4x = 2

h) Cosx - \(\sqrt{3}\)Sinx = -1

Nguyễn Việt Lâm
18 tháng 10 2020 lúc 19:57

a. ĐKXĐ: ...

\(\Leftrightarrow\left[{}\begin{matrix}cotx=1\\cotx=\sqrt{3}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{4}+k\pi\\x=\frac{\pi}{6}+k\pi\end{matrix}\right.\)

b.

\(\Leftrightarrow\left[{}\begin{matrix}sin2x=-1\\sin2x=\frac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2x=-\frac{\pi}{2}+k2\pi\\2x=\frac{\pi}{6}+k2\pi\\2x=\frac{5\pi}{6}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\frac{\pi}{4}+k\pi\\x=\frac{\pi}{12}+k\pi\\x=\frac{5\pi}{12}+k\pi\end{matrix}\right.\)

Nguyễn Việt Lâm
18 tháng 10 2020 lúc 19:59

c. ĐKXĐ: ...

\(\Leftrightarrow\left[{}\begin{matrix}tan\left(x+1\right)=1\\tan\left(x+1\right)=-2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x+1=\frac{\pi}{4}+k\pi\\x+1=arctan\left(-2\right)+k\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1+\frac{\pi}{4}+k\pi\\x=-1+arctan\left(-2\right)+k\pi\end{matrix}\right.\)

d.

\(\Leftrightarrow1-cos^2x+cosx+1=0\)

\(\Leftrightarrow-cos^2x+cosx+2=0\Rightarrow\left[{}\begin{matrix}cosx=-1\\cosx=2\left(l\right)\end{matrix}\right.\)

\(\Leftrightarrow x=\pi+k2\pi\)

Nguyễn Việt Lâm
18 tháng 10 2020 lúc 20:02

e.

\(3\left(1-sin^2x\right)-5sinx-1=0\)

\(\Leftrightarrow-3sin^2x-5sinx+2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=\frac{1}{3}\\sinx=-2\left(l\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=arcsin\left(\frac{1}{3}\right)+k2\pi\\x=\pi-arcsin\left(\frac{1}{3}\right)+k2\pi\end{matrix}\right.\)

f.

\(2\left(2cos^2x-1\right)-cosx+7=0\)

\(\Leftrightarrow4cos^2x-cosx+5=0\)

Phương trình vô nghiệm

Khách vãng lai đã xóa
Nguyễn Việt Lâm
18 tháng 10 2020 lúc 20:04

g.

\(\Leftrightarrow\sqrt{2}sin\left(4x+\frac{\pi}{4}\right)=2\)

\(\Leftrightarrow sin\left(4x+\frac{\pi}{4}\right)=\sqrt{2}>1\)

Phương trình vô nghiệm

h.

\(\Leftrightarrow\frac{\sqrt{3}}{2}sinx-\frac{1}{2}cosx=\frac{1}{2}\)

\(\Leftrightarrow sin\left(x-\frac{\pi}{6}\right)=\frac{1}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}x-\frac{\pi}{6}=\frac{\pi}{6}+k2\pi\\x-\frac{\pi}{6}=\frac{5\pi}{6}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{3}+k2\pi\\x=\pi+k2\pi\end{matrix}\right.\)

Khách vãng lai đã xóa

Các câu hỏi tương tự
lu nguyễn
Xem chi tiết
Bich Hong
Xem chi tiết
Phuong Nguyen dang
Xem chi tiết
Mai Anh
Xem chi tiết
hạ băng
Xem chi tiết
Phuong Nguyen dang
Xem chi tiết
lu nguyễn
Xem chi tiết
Đức Hùng Mai
Xem chi tiết
Khánh Linh Nguyễn
Xem chi tiết