giải các phương trình
a \(\sqrt{7+\sqrt{2x}=3+\sqrt{5}}\)
b \(\sqrt{3x^2-4x}=2x-3\)
c\(\dfrac{\left(7-x\right)\sqrt{7-x}+\left(x-5\right)\sqrt{x-5}}{\sqrt{7-x}+\sqrt{x-5}}=2\)
Giải các phương trình (giải chi tiết):
a) \(\sqrt{3x}-5\sqrt{12x}+7\sqrt{27x}=12\)
b) \(5\sqrt{9x+9}-2\sqrt{4x+4}+\sqrt{x+1}=36\)
tìm điều kiện xác định và nghiệm của phương trình:
1)√x+1=√5
2)√x^2-10x+25=2x+2
3)√9-x^2+√3+x=0
4)√4x^2-9-√2x-3=0
5)√2x^2-1 +5=0
1) Giải các PT sau:
a)\(\sqrt{x+6-4\sqrt{x+2}}+\sqrt{x+11-6\sqrt{x+2}}=1\)
b)\(x^2-10x+27=\sqrt{6-x}+\sqrt{x-4}\)
c)\(x^2-2x-x\sqrt{x}-2\sqrt{x}+4=0\)
d)\(x^2+3x+1=\left(x+3\right)\sqrt{x^2+1}\)
e)\(2x+3=2\sqrt{x+1}+\sqrt{2x+1}\)
f)\(2+\sqrt{3-8x}=6x+\sqrt{4x-1}\)
Bài 1 : Giải pt
a) 2\(\sqrt{2x}\) - 5\(\sqrt{8x}\) + 7\(\sqrt{18x}\) = 28
b) \(\sqrt{4x-20}\) + \(\sqrt{x-5}\) - \(\dfrac{1}{3}\)\(\sqrt{9x-45}\) = 4
c) \(\sqrt{\dfrac{3x-2}{x+1}}\) = 2
d) \(\dfrac{\sqrt{5x-4}}{\sqrt{x+2}}\) = 2
Giải phương trình:
a. \(\sqrt{4-5x}=12\)
b. \(10-2\sqrt{2x+1}=4\)
c. \(5-\sqrt{x-1}=7\)
d. \(\sqrt{10+\sqrt{3x}}=2+\sqrt{6}\)
e. \(\sqrt{x+1}+10=2\sqrt{x+1}-2\)
f. \(\sqrt{16x+32}-5\sqrt{x+2}=-2\)
a,\(\sqrt{\frac{3x}{2}}\) b,\(\sqrt{\frac{-2}{3}}\) c,\(\sqrt{3x-2}\) d,\(\sqrt{2-3x}\) e,\(\sqrt{\frac{1}{2x+1}}\) j,\(\sqrt{2x^2}\)
g,\(\sqrt{x^2-4}\) h,\(\sqrt{4-x^2}\) i,\(\sqrt{\frac{1}{x^2-4x+4x}}\) k,\(\sqrt{4x^2+4x-1}\) l,\(\sqrt{\frac{x-3}{2-x}}\)
Tìm x để phân thức có nghĩa
2. tìm x
a, \(3\sqrt{2x}\) + \(\sqrt{8x}\) - \(\sqrt{18x}\)= 16
b, \(\sqrt{4x+20}\) - \(3\sqrt{x+5}\) + \(\dfrac{4}{3}\) \(\sqrt{9x+45}\) = 6
a chứng minh rằng: \(\dfrac{x+3+2.\sqrt{x^2-9}}{2x-6+\sqrt{x^2-9}}=\dfrac{\sqrt{x^2-9}}{x-3}\)
b rút gọn biểu thức T = \(\dfrac{x^2+5x+6+x.\sqrt{9-x^2}}{3x-x^2+\left(x+2\right)\sqrt{9-x^2}}\)