bpt logarit đưa về cùng cơ số :
1, \(2lg\left[\left(x-1\right)\sqrt{5}\right]>lg\left(x-5\right)+1\)
2, \(log_{\dfrac{1}{2}}\left[log_2\left(3^x+1\right)\right]>-1\)
3, \(log_x\dfrac{3x-1}{x^2+1}>0\)
4, \(\left(0,08\right)^{log_{x-0,5}x}\ge\left(\dfrac{5\sqrt{2}}{2}\right)^{log_{x-0,5}\left(2x-1\right)}\)
giải bpt logarit đưa về cùng cơ số
1, \(2lg\left[\left(x-1\right)\sqrt{5}\right]>lg\left(x-5\right)+1\)
2, \(log_{\dfrac{1}{2}}\left[log_2\left(3^x+1\right)\right]>-1\)
3, \(log_x\dfrac{3x-1}{x^2+1}>0\)
4, \(\left(0,08\right)^{log_{0,5-x}x}\ge\left(\dfrac{5\sqrt[]{2}}{2}\right)^{log_{x-0,5}\left(2x-1\right)}\)
- Ai đó làm giúp với nhé
bpt logarit đặt ẩn phụ
1, \(log_3x.log_2x< log_3x^2+log_2\dfrac{x}{4}\)
2, \(log_2\left(2^x-1\right).log_{\dfrac{1}{2}}\left(2^{x+1}-2\right)>-2\)
3, \(x^{lg_x^2-3lgx+1}>1000\)
4, \(6^{log_6^2x}+x^{log_6x}\le12\)
giải bpt logarit đặt ẩn phụ
1, \(log_3x.log_2x< log_3x^2+log_2\dfrac{x}{4}\)
2, \(log_2\left(2^x-1\right).log_{\dfrac{1}{2}}\left(2^{x+1}-2\right)>-2\)
3, \(x^{lg^2x-3lgx+1}>1000\)
4, \(6^{log^2_6x}+x^{log_6x}\le12\)
làm hộ giùm mình nhé
Tập nghiệm của bất pt \(\log_{\dfrac{1}{2}}\left(x+1\right)-log_{\dfrac{1}{2}}\left(2x-1\right)< 2\)
help me
\(log_2\sqrt{2x^2-2x-3}+log^{x-1}_{\dfrac{1}{2}}=0\)
\(log^{x+4}_2+2log^{x+2}_4=2log^{\dfrac{1}{8}}_{\dfrac{1}{2}}\)
\(log^{4^x+1}_2=log^{2^{2x+3}-6}_2+x\)
Tìm a>1 để bất phương trình \(log_a\left(1-6a^{-x}\right)+2x-2\ge0\) nghiệm đúng với mọi x>2
Cho phương trình \(\left(m+1\right)16^x-2\left(2m-3\right)4^x+6m+5=0\) với m là tham số thực. Tập tất cả các giá trị của m để phương trình có 2 nghiệm trái dấu có dạng (a,b). Tính P=a.b
27. Bất phương trình \(\frac{1}{2}log_2\left(x^2+4x-5\right)>log_{\frac{1}{2}}\left(\frac{1}{x+7}\right)\) có tập nghiệm là khoảng (a;b). Giá trị của 5b - a bằng?