Giải các bất phương trình sau:
1) \(\dfrac{2x-5}{x^2-6x-7}\le\dfrac{1}{x-3}\)
2) \(\dfrac{\left(3-2x\right)x^2}{\left(x-1\right)}\ge0\)
3) \(\dfrac{2x}{x-1}\le\dfrac{5}{2x-1}\)
Tập nghiệm của bất phương trình \(x^2+2x+\dfrac{1}{\sqrt{x+4}}>3+\dfrac{1}{\sqrt{x+4}}\) là
Tổng các nghiệm nguyên của bất phương trình \(\dfrac{x-2}{\sqrt{x-4}}\le\dfrac{4}{\sqrt{x-4}}\) bằng
Giải các phương trình và bất phương trình sau:
a) \(\dfrac{2x}{2x^2-5x+3}+\dfrac{13x}{2x^2+x+3}=6\)
b) \(x^2+\left(\dfrac{x}{x-1}\right)^2=1\)
c) \(\dfrac{\sqrt{2-x}+4x-3}{x}\ge2\)
d) \(6\sqrt{\left(x-2\right)\left(x-32\right)}\le x^{^{ }2}-34x+48\)
Giái bất phương trình x2+10\(\le\dfrac{2x^2+1}{x^2-8}\)
Giải phương trình \(4x^2+12x\sqrt{x+1}=27\left(x+1\right)\) trên R, ta được nghiệm x = a \(x=\dfrac{b-c\sqrt{d}}{e}\) trong đó a, b, c, d, e là các số tự nhiên và \(\dfrac{b}{e}\) tối giản. Khi đó giá trị biểu thức: F = a+b-c+d-e
Giải BPT
\(\dfrac{x}{x+1}-2\sqrt{\dfrac{x+1}{x}}>3\)
Giải phương trình \(x+\sqrt{5+\sqrt{x-1}}=6\) ta được nghiệm dạng \(x=\dfrac{a-\sqrt{b}}{c}\) với a, b, c là các số nguyên tố. Tính P = a + b+ c
Phương trình \(5\sqrt{x^{^3}+x^2-2x}=2x^2+6x-2\) với nghiệm có dạng \(\dfrac{a\pm\sqrt{b}}{c}\) . Tính tổng S = a + b+ c