Bài 1: Giải các bất phương trình:
3(1 - x)> \(\dfrac{7-3x^2}{x+1}\)
Bài 2. Giải và biện luận bất phương trình
( m2 - 4 ) x +3 > ( 2m -1) x +m
Giải các bất phương trình sau
1) \(\dfrac{\text{x - 2}}{x+1}-\dfrac{3}{x+2}>0\) 2) \(\dfrac{\text{x + 1}}{x+2}+\dfrac{x}{x-3}\le0\)
3) \(\dfrac{\text{x}^2+2x+5}{x+4}>x-3\) 4) \(\sqrt{\text{x^2}-3x+2}\ge3\)
giải bất phương trình\(\left\{{}\begin{matrix}\left(x^2-4\right)\left(x^2+1\right)\ge0\\\left(x+1\right)\left(3x^2-x+1\right)< 0\end{matrix}\right.\)
giải các bất phương trình sau:
4) \(\left|2x-3\right|>5\) 5) \(\left|1-2x\right|\le4\) 6) \(\left|3x+1\right|>x-2\)
Giải các bất phương trình sau :
a. \(\dfrac{3x+1}{2}-\dfrac{x-2}{3}< \dfrac{1-2x}{4}\)
b. \(\left(2x-1\right)\left(x+3\right)-3x+1\le\left(x-1\right)\left(x+3\right)+x^2-5\)
Giải các hệ bất phương trình sau :
a) \(\left\{{}\begin{matrix}-2x+\dfrac{3}{5}>\dfrac{2x-7}{3}\\x-\dfrac{1}{2}< \dfrac{5\left(3x-1\right)}{2}\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}\dfrac{3x+1}{2}-\dfrac{3-x}{3}\le\dfrac{x+1}{4}-\dfrac{2x-1}{3}\\3-\dfrac{2x+1}{5}>x+\dfrac{4}{3}\end{matrix}\right.\)
Giải bất phương trình sau:
a) \(2x^2-3x+2\le\sqrt{3x-2}\)
b) \(3\left(2x^2-x\sqrt{x^2+3}\right)< 2\left(1-x^4\right)\)
Giải các bất phương trình:
1) | 3x - 4 | + | x -1 | > 5
2) | x - 1| + | 2 - x| > 3 -x
3) | x + 1| + | x -1 | < x -3
4) | 2x -1 | / ( x + 1) ( x - 2) > 1
5) | 2x -5 | > x +3
bài 1: giải các bất phương trình sau:
1) (x-3)(4-x)≥0
2) \(\frac{1+2x}{3x-4}< 0\)
3) (x+1)(x-1)(3x-6)>0
4) 3x(2x+7)(9-3x)≥0
5) \(\frac{\left(2x-5\right)\left(x+2\right)}{-4x+3}>0\)
6) \(\frac{2}{x-1}\le\frac{5}{2x-1}\)
7) \(\frac{x-3}{x+1}>\frac{x+5}{x-2}\)
8) \(\frac{2x^2+x}{1-2x}\ge1-x\)