Gọi số tự nhiên cần tìm có dạng là ab(Điều kiện: \(a,b\in Z^+\); \(0< a< 10\); \(0< b< 10\))
Vì tổng các chữ số của nó bằng 10 nên ta có phương trình: a+b=10(1)
Vì khi số ấy viết theo thứ tự ngược lại thì số ấy giảm 36 đơn vị nên ta có phương trình:
\(10b+a=10a+b-36\)
\(\Leftrightarrow10b+a-10a-b=-36\)
\(\Leftrightarrow-9a+9b=-36\)
\(\Leftrightarrow a-b=4\)(2)
Từ (1) và (2) ta lập được hệ phương trình:
\(\left\{{}\begin{matrix}a+b=10\\a-b=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2b=6\\a-b=4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=4+b\\b=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=4+3=7\\b=3\end{matrix}\right.\)
Vậy: Số cần tìm là 73