\(A=5x^2+2y^2+4xy-2x+4y+2021\)
\(=4x^2+4xy+y^2+y^2+4y+4+x^2-2x+1+2016\)
\(=\left(2x+y\right)^2+\left(y+2\right)^2+\left(x-1\right)^2+2016\ge2016\)
Dấu "=" xảy ra khi \(\left\{\begin{matrix}x=1\\y=-2\end{matrix}\right.\)
Vậy MinA=2016 khi \(\left\{\begin{matrix}x=1\\y=-2\end{matrix}\right.\)
thử sức cùng toan10
= (2x +y)2 + (x-1)2 +(y+2)2 +2012 - 1-4
GTNN = 2007