\(\frac{2}{x^2-x+1}=\frac{2}{x^2-x+\frac{1}{4}+\frac{3}{4}}=\frac{2}{\left(x-\frac{1}{2}\right)^2+\frac{3}{4}}\)
Ta thấy: \(\left(x-\frac{1}{2}\right)^2\ge0\)
\(\Rightarrow\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
\(\Rightarrow\frac{2}{\left(x-\frac{1}{2}\right)^2+\frac{3}{4}}\ge\frac{2}{\frac{3}{4}}=\frac{8}{3}\)
Dấu "=" xảy ra khi \(\left(x-\frac{1}{2}\right)^2=0\Rightarrow x-\frac{1}{2}=0\Rightarrow x=\frac{1}{2}\)
Vậy \(Max=\frac{8}{3}\) khi \(x=\frac{1}{2}\)
Ta có:
\(\frac{2}{x^2-x+1}\)
\(=\frac{2}{x^2-2\cdot\frac{1}{2}x+\frac{1}{4}+\frac{3}{4}}\)
\(=\frac{2}{\left(x-\frac{1}{2}\right)^2+\frac{3}{4}}\le\frac{2}{\frac{3}{4}}=\frac{8}{3}\)
Dấu bằng xảy ra khi \(x-\frac{1}{2}=0\)
\(x=0+\frac{1}{2}=\frac{1}{2}\)
Vậy GTLN của phân thức trên là \(\frac{8}{3}\) khi \(x=\frac{1}{2}\)